(Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))
/*
* POJ_2407.cpp
*
* Created on: 2013年11月19日
* Author: Administrator
*/ #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; typedef long long ll; const int maxn = 1000015; bool u[maxn];
ll su[maxn];
ll num; ll gcd(ll a, ll b) {
if (b == 0) {
return a;
} return gcd(b, a % b);
} void prepare() {//欧拉筛法产生素数表
ll i, j;
memset(u, true, sizeof(u)); for (i = 2; i <= 1000010; ++i) {
if (u[i]) {
su[++num] = i;
} for (j = 1; j <= num; ++j) {
if (i * su[j] > 1000010) {
break;
} u[i * su[j]] = false; if (i % su[j] == 0) {
break;
}
}
}
} ll phi(ll x) {//欧拉函数,用于求[1,x)中与x互质的整数的个数
ll ans = 1;
int i, j, k;
for (i = 1; i <= num; ++i) {
if (x % su[i] == 0) {
j = 0;
while (x % su[i] == 0) {
++j;
x /= su[i];
} for (k = 1; k < j; ++k) {
ans = ans * su[i] % 1000000007ll;
}
ans = ans * (su[i] - 1) % 1000000007ll;
if (x == 1) {
break;
}
}
} if (x > 1) {
ans = ans * (x - 1) % 1000000007ll;
} return ans;
} int main() {
prepare();
int n;
while (scanf("%d", &n) != EOF) {
printf("%lld\n", phi(n-1));//以n为模的本原根的个数为phi(n-1)。而,[1,n]与n互质的整数的个数为phi(n)
} return 0;
}
(Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))的更多相关文章
- POJ 1284 Primitive Roots (欧拉函数+原根)
<题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...
- POJ1284 Primitive Roots [欧拉函数,原根]
题目传送门 Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5434 Accepted: ...
- 【POJ1284】Primitive Roots 欧拉函数
题目描述: 题意: 定义原根:对于一个整数x,0<x<p,是一个mod p下的原根,当且仅当集合{ (xi mod p) | 1 <= i <= p-1 } 等于{ 1, .. ...
- POJ 1284 Primitive Roots 原根
题目来源:POJ 1284 Primitive Roots 题意:求奇素数的原根数 思路:一个数n是奇素数才有原根 原根数是n-1的欧拉函数 #include <cstdio> const ...
- poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)
http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2. ...
- POJ 2407 Relatives(欧拉函数)
http://poj.org/problem?id=2407 题意: 给出一个n,求小于等于的n的数中与n互质的数有几个. 思路: 欧拉函数的作用就是用来求这个的. #include<iostr ...
- POJ 1284 Primitive Roots 数论原根。
Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2479 Accepted: 1385 D ...
- poj 1284 Primitive Roots (原根)
Primitive Roots http://poj.org/problem?id=1284 Time Limit: 1000MS Memory Limit: 10000K Descr ...
- POJ 1284 Primitive Roots (求原根个数)
Primitive Roots 题目链接:id=1284">http://poj.org/problem?id=1284 利用定理:素数 P 的原根的个数为euler(p - 1) t ...
随机推荐
- javascript高级特性(面向对象)
javascript高级特性(面向对象): * 面向对象: * 面向对象和面向过程的区别: * 面向对象:人就是对象,年龄\性别就是属性,出生\上学\结婚就是方法. * 面向过程:人出生.上学.工作. ...
- python面对对象编程------3:写集合类的三种方法
写一个集合类的三种方法:wrap,extend,invent 一:包装一个集合类 class Deck: def __init__( self ): self._cards = [card6(r+1, ...
- 执行oracle函数的四种方法
1.在定义函数时:如果有参数,则参数可有类型但是不加长度. 2.在执行函数: var/variable var_name var_type(如果数据类型是number则没有长度,如果数据类型是varc ...
- HTML5 microdata
schema.org 测试地址 http://www.google.com/webmasters/tools/richsnippets
- C# LINQ 基本操作实例
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- QT5控件-QDateTimeEdit和类QDateTime
#ifndef MAINWINDOW_H #define MAINWINDOW_H #include <QMainWindow> #include <QDateTime> #i ...
- 快速幂:quickpow
众所周知,快速幂是优化对数的次方运算的最普遍手段.在学习快速幂的思想时,其分治思想容易让大家用简单的递归实现. 但其实,除了递归之外,更好的方法会是简单的 WHILE循环.下面贴代码: #includ ...
- XMLHttpRequest state以及readystate的对应值
status状态值长整形标准http状态码,定义如下: Number Description 100 Continue101 Switching PRotocols200 OK201 Create ...
- 【基础教程】推荐10+必备的 WordPress 常用插件
1.Akismet Akismet 是 WordPress 官方推荐的一款 WordPress 防垃圾评论插件,也是默认已安装的插件. 2.WP-Postviews 最好的最流行的WordPress浏 ...
- Jq 遍历 全选 全不选 反选
//全选 全不选 $('#checkAll').click(function () { //判断是否被选中 var bischecked = $('#checkAll').is(':checked') ...