摘要:

RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集
RDD有两种操作算子:

        Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作
         Ation(执行):触发Spark作业的运行,真正触发转换算子的计算
 
本系列主要讲解Spark中常用的函数操作:
         1.RDD基本转换
         2.键-值RDD转换
         3.Action操作篇
本发所讲函数
 
1.reduce(func):通过函数func先聚集各分区的数据集,再聚集分区之间的数据,func接收两个参数,返回一个新值,新值再做为参数继续传递给函数func,直到最后一个元素
 
2.collect():以数据的形式返回数据集中的所有元素给Driver程序,为防止Driver程序内存溢出,一般要控制返回的数据集大小
 
3.count():返回数据集元素个数
 
4.first():返回数据集的第一个元素
 
5.take(n):以数组的形式返回数据集上的前n个元素
 
6.top(n):按默认或者指定的排序规则返回前n个元素,默认按降序输出
 
7.takeOrdered(n,[ordering]): 按自然顺序或者指定的排序规则返回前n个元素
例1:
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("reduce")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10,2)
val reduceRDD = rdd.reduce(_ + _)
val reduceRDD1 = rdd.reduce(_ - _) //如果分区数据为1结果为 -53
val countRDD = rdd.count()
val firstRDD = rdd.first()
val takeRDD = rdd.take(5) //输出前个元素
val topRDD = rdd.top(3) //从高到底输出前三个元素
val takeOrderedRDD = rdd.takeOrdered(3) //按自然顺序从底到高输出前三个元素 println("func +: "+reduceRDD)
println("func -: "+reduceRDD1)
println("count: "+countRDD)
println("first: "+firstRDD)
println("take:")
takeRDD.foreach(x => print(x +" "))
println("\ntop:")
topRDD.foreach(x => print(x +" "))
println("\ntakeOrdered:")
takeOrderedRDD.foreach(x => print(x +" "))
sc.stop
}
输出:
func +:
func -: //如果分区数据为1结果为 -53
count:
first:
take: top: takeOrdered:
 (RDD依赖图:红色块表示一个RDD区,黑色块表示该分区集合,下同)
 
         (RDD依赖图)
 
8.countByKey():作用于K-V类型的RDD上,统计每个key的个数,返回(K,K的个数)
 
9.collectAsMap():作用于K-V类型的RDD上,作用与collect不同的是collectAsMap函数不包含重复的key,对于重复的key。后面的元素覆盖前面的元素
 
10.lookup(k):作用于K-V类型的RDD上,返回指定K的所有V值
例2:
 def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("KVFunc")
val sc = new SparkContext(conf)
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
val rdd = sc.parallelize(arr,2)
val countByKeyRDD = rdd.countByKey()
val collectAsMapRDD = rdd.collectAsMap() println("countByKey:")
countByKeyRDD.foreach(print) println("\ncollectAsMap:")
collectAsMapRDD.foreach(print)
sc.stop
}
输出:
countByKey:
(B,)(A,)
collectAsMap:
(A,)(B,)
 
        (RDD依赖图)
 
11.aggregate(zeroValue:U)(seqOp:(U,T) => U,comOp(U,U) => U):
seqOp函数将每个分区的数据聚合成类型为U的值,comOp函数将各分区的U类型数据聚合起来得到类型为U的值
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("Fold")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(List(1,2,3,4),2)
val aggregateRDD = rdd.aggregate(2)(_+_,_ * _)
println(aggregateRDD)
sc.stop
}
输出:

步骤1:分区1:zeroValue+1+2=5   分区2:zeroValue+3+4=9
 
步骤2:zeroValue*分区1的结果*分区2的结果=90
 
            (RDD依赖图)
 
12.fold(zeroValue:T)(op:(T,T) => T):通过op函数聚合各分区中的元素及合并各分区的元素,op函数需要两个参数,在开始时第一个传入的参数为zeroValue,T为RDD数据集的数据类型,,其作用相当于SeqOp和comOp函数都相同的aggregate函数
例3
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("Fold")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(Array(("a", 1), ("b", 2), ("a", 2), ("c", 5), ("a", 3)), 2)
val foldRDD = rdd.fold(("d", 0))((val1, val2) => { if (val1._2 >= val2._2) val1 else val2
})
println(foldRDD)
}
输出:
c,5
其过程如下:
1.开始时将(“d”,0)作为op函数的第一个参数传入,将Array中和第一个元素("a",1)作为op函数的第二个参数传入,并比较value的值,返回value值较大的元素
 
2.将上一步返回的元素又作为op函数的第一个参数传入,Array的下一个元素作为op函数的第二个参数传入,比较大小
 
3.重复第2步骤
 
每个分区的数据集都会经过以上三步后汇聚后再重复以上三步得出最大值的那个元素,对于其他op函数也类似,只不过函数里的处理数据的方式不同而已
 
             (RDD依赖图)
 
13.saveAsFile(path:String):将最终的结果数据保存到指定的HDFS目录中
 
14.saveAsSequenceFile(path:String):将最终的结果数据以sequence的格式保存到指定的HDFS目录中
 

Spark常用函数讲解之Action操作的更多相关文章

  1. Spark常用函数讲解之键值RDD转换

    摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Trans ...

  2. spark 常用函数介绍(python)

    以下是个人理解,一切以官网文档为准. http://spark.apache.org/docs/latest/api/python/pyspark.html 在开始之前,我先介绍一下,RDD是什么? ...

  3. Spark RDD概念学习系列之action操作

    不多说,直接上干货! action操作  

  4. Spark常用函数(源码阅读六)

    源码层面整理下我们常用的操作RDD数据处理与分析的函数,从而能更好的应用于工作中. 连接Hbase,读取hbase的过程,首先代码如下: def tableInitByTime(sc : SparkC ...

  5. CI框架常用函数(AR数据库操作的常用函数)

    用户手册地址:http://codeigniter.org.cn/user_guide/index.html 1.查询表记录$this->db->select(); //选择查询的字段$t ...

  6. 四、spark常用函数说明学习

    1.parallelize       并行集合,切片数.默认为这个程序所分配到的资源的cpu核的个数.       查看大小:rdd.partitions.size      sc.paraliel ...

  7. Opencv常用函数讲解

    1.approxPolyDP(Mat(ps), poly, 5, true);//根据点集,拟合出多边形 2.fillConvexPoly(mask, Mat(ps), Scalar(255));根据 ...

  8. Spark RDD、DataFrame原理及操作详解

    RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...

  9. Spark Streaming中的操作函数讲解

    Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...

随机推荐

  1. Javascript进阶篇——(DOM—节点---获取浏览器窗口可视区域大小+获取网页尺寸)—笔记整理

    浏览器窗口可视区域大小获得浏览器窗口的尺寸(浏览器的视口,不包括工具栏和滚动条)的方法:一.对于IE9+.Chrome.Firefox.Opera 以及 Safari: • window.innerH ...

  2. Jmail组件发送邮件说明ASP.NET

    ASP.Net环境下使用Jmail组件发送邮件2008-01-25 18:59实现过程: 不同于在Asp中使用Jmail,直接使用 Server.CreateObject("Jmail.Me ...

  3. Jquery:强大的选择器<一>

    今天回家之后,学习的是Jquery的选择器.选择器作为Jquery的优势之一,确实让我感觉到了它的强大.Jquery选择器分为基本选择器.层次选择器.过滤选择器和表单选择器,下面我一一介绍这四种选择器 ...

  4. Oracle函数function

    --function /* 函数是有返回值.-只能有一个返回值. 语法 Create or replace func1(参数) Return varchar2 As Pl/sql块 Return 'J ...

  5. iOS开发-清理缓存功能的实现

    移动应用在处理网络资源时,一般都会做离线缓存处理,其中以图片缓存最为典型,其中很流行的离线缓存框架为SDWebImage. 但是,离线缓存会占用手机存储空间,所以缓存清理功能基本成为资讯.购物.阅读类 ...

  6. CentOS FTP服务器权限控制

    在默认配置下,本地用户登入FTP后可以使用cd命令切换到其他目录,这样会对系统带来安全隐患.可以通过以下三条配置文件来控制用户切换目录. chroot_list_enable=YES/NO(NO) 设 ...

  7. table不能遗露了tbody

    1.假如创建一个空表 ,然后去设置它的innerHTML,并获取表单的高度:在ie10及其他的浏览器中,会像预期一样正常被解析出来: <!DOCTYPE html> <html> ...

  8. 如何利用putty的密钥登陆

    1.登陆主机,输入:mkdir /root/.ssh(创建SSH密钥目录) touch /root/.ssh/authorized_keys (创建SSH密钥文件):   2.输入:vi /root/ ...

  9. HTML5画布(线条、渐变)

    绘制直线时,一般会用到moveTo与lineTo两种方法. 案例1: <!DOCTYPE html><html><head lang="en"> ...

  10. css3实现各种渐变效果,比较适合做手机触屏版

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...