「题解」:windy数
问题: windy数
时间限制: 1 Sec 内存限制: 512 MB
题面
题目描述
Windy 定义了一种 Windy 数:不含前导零且相邻两个数字之差至少为
的正整数被称为 Windy 数。
Windy 想知道,在A和B之间,包括A和B,总共有多少个 Windy 数?
输入格式
一行两个数,分别为 A,B 。
输出格式
输出一个整数,表示答案。
样例输入
1 10
样例输出
9
题解
我的数位dp入门题,嗯,其实挺easy的。
设f[i][j]表示填了i位数,最高位是j的windy数的个数。
于是不考虑神特么的先导0问题单考虑一下临位差距至少为2的问题直接大力dp算出所有的值。
然后再来一遍大力dp,j从1-9循环累加答案就可以了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define int long long
#define rint register int
#define ll long long
using namespace std;
int f[][]={},a,b;
ll pw[];
void prework()
{
pw[]=;
for(rint i=;i<=;++i)pw[i]=pw[i-]*;
for(rint i=;i<=;++i)f[][i]=;
for(rint i=;i<=;++i)//枚举数位
for(rint j=;j<=;++j)//枚举最高位
for(rint k=;k<=;++k)//枚举上一个状态的最高位,本状态的次高位
if(abs(j-k)>=)f[i][j]+=f[i-][k];
}
int count(int x)
{
int w=,y,ans=,pre;
while(pw[w]<=x)++w;//求位数
for(rint i=;i<w;++i)//枚举位数
for(rint j=;j<=;++j)//枚举最高位
ans+=f[i][j];
y=x/pw[w-];
for(rint i=;i<y;++i)ans+=f[w][i];
pre=y;
x%=pw[w-];
for(rint i=w-;i>=;--i)
{
y=x/pw[i-];
for(rint j=;j<y;++j)
if(abs(j-pre)>=)
ans+=f[i][j];
if(abs(pre-y)<)break;
pre=y;
x%=pw[i-];
}
return ans;
}
signed main()
{
scanf("%lld %lld",&a,&b);
prework();
cout<<count(b+)-count(a)<<endl;
return ;
}
「题解」:windy数的更多相关文章
- 「SCOI2009」windy数
传送门 Luogu 解题思路 数位 \(\text{DP}\) 设状态 \(dp[now][las][0/1][0/1]\) 表示当前 \(\text{DP}\) 到第 \(i\) 位,前一个数是 \ ...
- 「CQOI2015」选数
「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都 ...
- 「FJOI2016」神秘数 解题报告
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...
- LibreOJ2095 - 「CQOI2015」选数
Portal Description 给出\(n,k,L,R(\leq10^9)\),求从\([L,R]\)中选出\(n\)个可相同有顺序的数使得其gcd为\(k\)的方案数. Solution 记\ ...
- 【LOJ】#3094. 「BJOI2019」删数
LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以 ...
- 「BZOJ3505」[CQOI2014] 数三角形
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 「题解」「HNOI2013」切糕
文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
随机推荐
- A1075 PAT Judge (25 分)
The ranklist of PAT is generated from the status list, which shows the scores of the submissions. Th ...
- Python做数据预处理
在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致. ...
- jdk源码阅读
转载https://www.cnblogs.com/mh-study/p/10078548.html 1.java.lang 1) Object 12) String 13) AbstractStri ...
- Python匹马行天下之_循环
一.while循环 如果条件成立(true),重复执行相同操作,条件不符合,跳出循环 while 循环条件: 循环操作 (1)while循环示例 例:输入王晓明5门课程的考试成绩,计算平均成绩 1 ...
- [CERC2017]Gambling Guide
题目 看起来非常随机游走,但是由于我们可以停在原地,所以变得不是非常一样 设\(f_x\)表示从\(x\)到\(n\)的期望距离 如果我们提前知道了\(f\),那么我们随机到了一张到\(y\)的车票, ...
- USACO2008 Time Management /// 贪心 oj24386
题目大意: 有N个工作被编号为1..N (1 ≤ N ≤ 1,000) 完成第i个工作需要T_i (1 ≤ T_i ≤ 1,000)的时间 第i个工作需在S_i (1 ≤ S_i ≤ 1,000,00 ...
- yolo3使用darknet卷积神经网络训练pascal voc
darknet本来最开始学的是https://github.com/pjreddie/darknet yolo3作者自己开发的,但是它很久不更新了而且mAP值不好观察,于是另外有个https://gi ...
- mantis 添加新状态配置方法
在mantis的状态栏中一般只有:新建.反馈.认可.已确认.已分派.已解决.已关闭,七个选项,如果想在其中加入新的状态怎么做? 我要加入的状态为:重新打开 1.添加状态信息 打开config_defa ...
- hive中,lateral view 与 explode函数
hive中常规处理json数据,array类型json用get_json_object(#,"$.#")这个方法足够了,map类型复合型json就需要通过数据处理才能解析. exp ...
- day30 python类的继承,抽象类等
Python之路,Day17 = Python基础17-面向对象入门 继承 class Student(People): pass print(Student.__bases__) # 查看 Stud ...