题意:给你n个元素的数组a。你可以在每个元素之前添加and和or的符号。每次询问最后变成r有多少种添号情况。

n<=1000,m<=5000,q<=1000.

标程:

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int mod=1e9+;
const int N=;
typedef long long ll;
int n,m,q,bin[N],tmp[N],rnk[N],bit[],a[N],sum[N];
int read()
{
int x=;char ch=getchar();
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='') {x=(x<<)+(x<<)+ch-'';break;}
return x;
}
int main()
{
scanf("%d%d%d",&n,&m,&q);
bin[]=;
for (int i=;i<=m;i++) rnk[i]=i;
for (int i=;i<=n;i++) bin[i]=(ll)bin[i-]*%mod;
for (int i=;i<=n;i++)
{
bit[]=bit[]=;
for (int j=;j<=m;j++) bit[a[j]=read()]++,sum[j]=((ll)sum[j]+(ll)bin[i-]*a[j]%mod)%mod;
bit[]+=bit[];
for (int j=m;j>=;j--) tmp[bit[a[rnk[j]]]--]=rnk[j];
swap(tmp,rnk);
}
reverse(rnk+,rnk+m+);
while (q--)
{
for (int i=;i<=m;i++) a[i]=read();
int mx=,mn=m+;
for (int i=;i<=m;i++)
if (a[rnk[i]]==) mn=min(mn,i);else mx=max(mx,i);
if (mx>mn) {puts("");continue;}
int sum1=(rnk[mx]==)?bin[n]:sum[rnk[mx]],//注意运算符二进制的长度为n
sum2=(rnk[mn]==)?:sum[rnk[mn]];
printf("%d\n",((ll)sum1-sum2+mod)%mod);
}
return ;
}

易错点:1.注意运算符二进制的长度为n。bin要处理到2^n。

题解:计数排序+性质/从后往前推+bitset

bitset的做法:我们从后往前考虑,由最后一个数An和Ans可以推得前n-1个数的运算和x。

枚举该位之前填&还是|,每一位有八种情况:

x&1=1  x=1

x&1=0  x=0

x&0=1  无解,直接跳出

x&0=0  ?任意

x|1=1  ?任意

x|0=1  x=1

x|1=0  无解,直接跳出

x|0=0  x=0

无解不考虑,返回0。

我们发现非任意的和Ans的答案是一样的,所以不用保存,只用bitset维护一样哪几个是?即可(这个可以自定义运算求)。如果都是?,那么接下来就没有限制了,返回2的若干次。

但是枚举&和|,复杂度真的是对的吗?如果某一位相异,那么运算符唯一确定。反之是所有位相同的情况,得到的一定是111???,000???的这种形式。

接下来如果同样所有位相同,以111???为例,推出来x要么全是?,直接返回,要么仍是全1,相当于也变成了唯一确定的状态。

所以不能唯一确定的只有一次。好像会卡一点,手写bitset较宜。

时间复杂度O(nmq/w)。

出题人给的解法:

设x为符号的二进制表示第i个数之前的符号如果是and,x[i]=1,反之x[i]=0。

对于给出数列的每一位统计bi,第n个数的第i位是作为bi的最高位。

容易发现,当x<bi时,最后答案的第i位应该是1,反之为0。

那么对于每一个询问数,就可以列出关于x的不等式了。最后算出解区间中有多少个数即可。

时间复杂度O(mq)。

loj2494 [hnoi2018]寻宝游戏的更多相关文章

  1. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  2. 5285: [Hnoi2018]寻宝游戏

    5285: [Hnoi2018]寻宝游戏 链接 分析: 从下面依次确定运算符号,然后在确定的过程中,需要确定的位数会逐渐减少.比如最后有一个1,如果在从下往上确定了一个or 1,那么再往前可以随便选了 ...

  3. BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)

    BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\ ...

  4. bzoj 5285: [Hnoi2018]寻宝游戏

    Description Solution 把输入的 \(n\) 个二进制数看作一个大小为 \(n*m\) 的矩阵 把每一列压成一个二进制数,其中最高位是最下面的元素 然后就有了 \(m\) 个二进制数 ...

  5. HNOI2018寻宝游戏

    https://www.luogu.org/problemnew/show/P4424 题解 我们首先按位考虑. 如果有一位最终的结果为1,那么我们可以把树的序列看成一个二进制数,先出现的在底位,后出 ...

  6. bzoj千题计划310:bzoj5285: [Hnoi2018]寻宝游戏(思维题+哈希)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 |0 和 &1 没有影响 若填‘|’,记为0,若填‘&’,记为1 先只考虑最 ...

  7. [HNOI2018]寻宝游戏

    Description: 给出\(n\)个长为\(m\)的01串,第0个为0,同时给出\(q\)个询问串,每次向其中添加\(n\)个\(\&\)或\(|\)符号,求使这些串按顺序运算得到询问串 ...

  8. 【比赛】HNOI2018 寻宝游戏

    考试的时候就拿了30points滚粗了 听说myy对这题的倒推做法很无奈,官方题解在此 正解思路真的很巧妙,也说的很清楚了 就是分别考虑每一位,会发现题解中的那个性质,然后把询问的二进制数按照排序后的 ...

  9. [HNOI2018]寻宝游戏(题解转载自别处)

    题解(自别处转载): Luogu CSDN 这题关键是将运算符也替换成0,1 然后在运算符与原串混杂里找规律. 而且替换的方式也有所要求,考场上两种替换方式都要尝试. #include <bit ...

随机推荐

  1. (转)JAVA国际化

    转:http://www.cnblogs.com/jjtech/archive/2011/02/14/1954291.html 国际化英文单词为:Internationalization,又称I18N ...

  2. 实现组件props双向绑定解决方案

    注意: 子组件不能直接修改prop过来的数据,会报错 方案一: 用data对象中创建一个props属性的副本 watch props属性 赋予data副本 来同步组件外对props的修改 watch ...

  3. 高效率使用google,国外搜索引擎,国内顺利使用Google的另类技巧,可用谷歌镜像, 可用google学术, 如何使用robots不让百度和google收录

    Google良好的搜索和易用性已经得到了广大网友的欢迎,但是除了我们经常使用的Google网站.图像和新闻搜索之外,它还有很多其他搜索功能和搜索技巧.如果我们也能充分利用,必将带来更大的便利.这里我介 ...

  4. Tomcat下载部署及解决中文乱码显示

    一.下载 tomcat下载链接:https://tomcat.apache.org/ 1.进入tomcat官网后,我使用的是tomcat9,所以我选择tomcat9.然后点击core下的zip包下载. ...

  5. Spring AOP之注解实现

    在自定义个注解之后,通过这个注解,标注需要切入的方法,同时把需要的参数传到切面去.那么我们怎么在切面使用这个注解.我们使用这个自定义注解一方面是为了传一些参数,另一方面也是为了省事.具体怎么省事,看我 ...

  6. spring boot 结合jsp简单示例

    引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>sp ...

  7. 2018今日头条湖北省赛【D】

    [题目链接]https://www.nowcoder.com/acm/contest/104/C 不知道这题为啥没过.队友现场推的都是对的..233333好像代码写的有问题,下来就很恼火. 题意大概就 ...

  8. Neo4j使用简单例子

    Neo4j Versions Most of the examples on this page are written with Neo4j 2.0 in mind, so they skip th ...

  9. 【第三周读书笔记】浅谈node.js中的异步回调和用js-xlsx操作Excel表格

    在初步学习了node.js之后,我发现他的时序问题我一直都很模糊不清,所以我专门学习了一下这一块. 首先我们来形象地理解一下进程和线程: 进程:CPU执行任务的模块.线程:模块中的最小单元. 例如:c ...

  10. [NOIP2005] 过河【Dp,思维题,缩点】

    Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...