pytorch之 CNN
###仅为自己练习,没有其他用途
1 # library
# standard library
import os # third-party library
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001 # learning rate
DOWNLOAD_MNIST = False # Mnist digits dataset
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
# not mnist dir or mnist is empyt dir
DOWNLOAD_MNIST = True train_data = torchvision.datasets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST,
) # # plot one example
# print(train_data.train_data.size()) # (60000, 28, 28)
# print(train_data.train_labels.size()) # (60000)
# plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
# plt.title('%i' % train_data.train_labels[0])
# plt.show() # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# pick 2000 samples to speed up testing
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000] class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(
in_channels=1, # input height
out_channels=16, # n_filters
kernel_size=5, # filter size
stride=1, # filter movement/step
padding=2, # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
), # output shape (16, 28, 28)
nn.ReLU(), # activation
nn.MaxPool2d(kernel_size=2), # choose max value in 2x2 area, output shape (16, 14, 14)
)
self.conv2 = nn.Sequential( # input shape (16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
nn.ReLU(), # activation
nn.MaxPool2d(2), # output shape (32, 7, 7)
)
self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
output = self.out(x)
return output, x # return x for visualization cnn = CNN()
print(cnn) # net architecture optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # following function (plot_with_labels) is for visualization, can be ignored if not interested
from matplotlib import cm
try: from sklearn.manifold import TSNE; HAS_SK = True
except: HAS_SK = False; print('Please install sklearn for layer visualization')
def plot_with_labels(lowDWeights, labels):
plt.cla()
X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
for x, y, s in zip(X, Y, labels):
c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01) plt.ion()
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader output = cnn(b_x)[0] # cnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients if step % 50 == 0:
test_output, last_layer = cnn(test_x)
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
if HAS_SK:
# Visualization of trained flatten layer (T-SNE)
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
labels = test_y.numpy()[:plot_only]
plot_with_labels(low_dim_embs, labels)
plt.ioff() # print 10 predictions from test data
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')
pytorch之 CNN的更多相关文章
- MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...
- ubuntu之路——day18 用pytorch完成CNN
本次作业:Andrew Ng的CNN的搭建卷积神经网络模型以及应用(1&2)作业目录参考这位博主的整理:https://blog.csdn.net/u013733326/article/det ...
- Pytorch和CNN图像分类
Pytorch和CNN图像分类 PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序.它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速 ...
- 基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...
- Pytorch写CNN
用Pytorch写了两个CNN网络,数据集用的是FashionMNIST.其中CNN_1只有一个卷积层.一个全连接层,CNN_2有两个卷积层.一个全连接层,但训练完之后的准确率两者差不多,且CNN_1 ...
- pytorch 8 CNN 卷积神经网络
# library # standard library import os # third-party library import torch import torch.nn as nn impo ...
- 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练
1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...
- Pytorch实现卷积神经网络CNN
Pytorch是torch的Python版本,对TensorFlow造成很大的冲击,TensorFlow无疑是最流行的,但是Pytorch号称在诸多性能上要优于TensorFlow,比如在RNN的训练 ...
- Neural Network Programming - Deep Learning with PyTorch with deeplizard.
PyTorch Prerequisites - Syllabus for Neural Network Programming Series PyTorch先决条件 - 神经网络编程系列教学大纲 每个 ...
随机推荐
- C#调用7z实现文件的压缩与解压
1.关于7z 首先在这里先介绍一下7z压缩软件,7z是一种主流的 压缩格式,它拥有极高的压缩比.在计算机科学中,7z是一种可以使用多种压缩算法进行数据压缩的档案格式.主要有以下特点: 来源且模块化的组 ...
- Frogger POJ - 2253(求两个石头之间”所有通路中最长边中“的最小边)
题意 题目主要说的是,有两只青蛙,在两个石头上,他们之间也有一些石头,一只青蛙要想到达另一只青蛙所在地方,必须跳在石头上.题目中给出了两只青蛙的初始位置,以及剩余石头的位置,问一只青蛙到达另一只青 ...
- vue超简单加载字体方法,解决scss难加载字体的问题
vue超简单加载字体方法,解决scss难加载字体的问题 scss在加载字体方面一直不太好用,需要繁杂的配置才能达到想要的效果,这里说一种非常简单的方法 在App.vue的style标签下引入字体文件后 ...
- stars-one原创工具——蓝奏云批量下载工具
一款可以批量下载蓝奏云分享的文件夹下的所有文件 基于HtmlUnit和okhttp开源库,所以打包后的jar包文件有点大 蓝奏云下载地址 github地址 需求 之前找电子书资源的时候,网友分享的蓝奏 ...
- proxy应用场景
//场景一:可以修改对象的值let o = { name: 'xiaoming', price: 190 } let d = new Proxy(o,{ get (target,key){ if(ke ...
- msi通过powershell安装、卸载
function install_msi($url) { $telemetry = @{ DisplayName = "Telemetry Service"; filename = ...
- ChoiceFiled MultipleChoiceField ModelChoiceField ModelMultipleChoiceField
1.ChoiceFiled 单选 字段 2.MultipleChoiceField 多选 3.ModelChoiceField 单选 query_set 4.ModelMultipleChoiceFi ...
- C# 实现验证码识别,使用AspriseOCR.dll
验证码(Captcha)基于十道安全栅栏, 为网页.App.小程序开发者打造立体.全面的人机验证,最大程度地保护注册登录.活动秒杀.点赞发帖.数据保护等各大场景下的业务安全.要做自动化脚本程序,就要能 ...
- BigInteger的权限设计
通过储存菜单权限的一个字段(id自定义也是可以的) 1 将选中菜单树的id转换成字符数组的形式, 进行BigInteger对权限进行2的权的和计算 public static BigInteger s ...
- python面向对象(一切皆对象)
使用面向对象的思想设计一个乌龟的角色: 表面特征:绿色.有4条腿.重10kg.有外壳等等 行为特征:爬.吃.睡觉.将头和四肢缩到壳里等等 class tortoise: bodycolor = &qu ...