###仅为自己练习,没有其他用途

  1 # library
# standard library
import os # third-party library
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001 # learning rate
DOWNLOAD_MNIST = False # Mnist digits dataset
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
# not mnist dir or mnist is empyt dir
DOWNLOAD_MNIST = True train_data = torchvision.datasets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST,
) # # plot one example
# print(train_data.train_data.size()) # (60000, 28, 28)
# print(train_data.train_labels.size()) # (60000)
# plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
# plt.title('%i' % train_data.train_labels[0])
# plt.show() # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# pick 2000 samples to speed up testing
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000] class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(
in_channels=1, # input height
out_channels=16, # n_filters
kernel_size=5, # filter size
stride=1, # filter movement/step
padding=2, # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
), # output shape (16, 28, 28)
nn.ReLU(), # activation
nn.MaxPool2d(kernel_size=2), # choose max value in 2x2 area, output shape (16, 14, 14)
)
self.conv2 = nn.Sequential( # input shape (16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
nn.ReLU(), # activation
nn.MaxPool2d(2), # output shape (32, 7, 7)
)
self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
output = self.out(x)
return output, x # return x for visualization cnn = CNN()
print(cnn) # net architecture optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # following function (plot_with_labels) is for visualization, can be ignored if not interested
from matplotlib import cm
try: from sklearn.manifold import TSNE; HAS_SK = True
except: HAS_SK = False; print('Please install sklearn for layer visualization')
def plot_with_labels(lowDWeights, labels):
plt.cla()
X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
for x, y, s in zip(X, Y, labels):
c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01) plt.ion()
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader output = cnn(b_x)[0] # cnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients if step % 50 == 0:
test_output, last_layer = cnn(test_x)
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
if HAS_SK:
# Visualization of trained flatten layer (T-SNE)
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
labels = test_y.numpy()[:plot_only]
plot_with_labels(low_dim_embs, labels)
plt.ioff() # print 10 predictions from test data
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')

pytorch之 CNN的更多相关文章

  1. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  2. ubuntu之路——day18 用pytorch完成CNN

    本次作业:Andrew Ng的CNN的搭建卷积神经网络模型以及应用(1&2)作业目录参考这位博主的整理:https://blog.csdn.net/u013733326/article/det ...

  3. Pytorch和CNN图像分类

    Pytorch和CNN图像分类 PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序.它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速 ...

  4. 基于pytorch的CNN、LSTM神经网络模型调参小结

    (Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...

  5. Pytorch写CNN

    用Pytorch写了两个CNN网络,数据集用的是FashionMNIST.其中CNN_1只有一个卷积层.一个全连接层,CNN_2有两个卷积层.一个全连接层,但训练完之后的准确率两者差不多,且CNN_1 ...

  6. pytorch 8 CNN 卷积神经网络

    # library # standard library import os # third-party library import torch import torch.nn as nn impo ...

  7. 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练

    1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...

  8. Pytorch实现卷积神经网络CNN

    Pytorch是torch的Python版本,对TensorFlow造成很大的冲击,TensorFlow无疑是最流行的,但是Pytorch号称在诸多性能上要优于TensorFlow,比如在RNN的训练 ...

  9. Neural Network Programming - Deep Learning with PyTorch with deeplizard.

    PyTorch Prerequisites - Syllabus for Neural Network Programming Series PyTorch先决条件 - 神经网络编程系列教学大纲 每个 ...

随机推荐

  1. 自学 JAVA 的几点建议

    微信公众号:一个优秀的废人 如有问题或建议,请后台留言,我会尽力解决你的问题. 前言 许久不见,最近公众号多了很多在校的师弟师妹们.有很多同学都加了我微信问了一些诸如 [如何自学 Java ]的问题, ...

  2. DP-01背包 (题)

    nyoj 325   http://acm.nyist.net/JudgeOnline/problem.php?pid=325 zb的生日 时间限制:3000 ms  |  内存限制:65535 KB ...

  3. JAVA中常用的异常处理方法

    1.在Java项目中经常遇到的异常情况 算术异常类:ArithmeticExecption 空指针异常类:NullPointerException 类型强制转换异常:ClassCastExceptio ...

  4. MVEL2.0的使用实例(一)

    本文是对java整合mvel2.0的一点示例: 如果表达式中有变量,解析表达式时必须传一个map MVEL.eval(expression, vars); /** * 基本解析表达式 */@Testp ...

  5. 系统升级更新,cocoaPods不可用的问题

    1.在终端运行: $ sudo gem install cocoa pods 会出现以下错误: ERROR:  While executing gem ... (Errno::EPERM) Opera ...

  6. 【新书推荐】《ASP.NET Core微服务实战:在云环境中开发、测试和部署跨平台服务》 带你走近微服务开发

    <ASP.NET Core 微服务实战>译者序:https://blog.jijiechen.com/post/aspnetcore-microservices-preface-by-tr ...

  7. Mysql 8+ 版本完全踩坑记录

    问题是这样 刚霍霍了一台腾讯云服务器需要安装mysql 然后就选择了8+这个版本. 安装步骤网上有的是. 我只写最主要的部分 绝对不出错 外网可访问 .net java都可以调用 其实不指望有人看 就 ...

  8. [bzoj2152] [洛谷P2634] 聪聪可可

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一般情况下石头剪刀布就好 ...

  9. [bzoj1875] [洛谷P2151] [SDOI2009] HH去散步

    Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...

  10. SpringBoot整合三大组建(Servlet、Listener、Filter)

    >[更多资源和教程请关注公众号:**非科班的科班**.如果觉得我写的还可以请给个赞,谢谢大家,你的鼓励是我创作的动力](https://blog.csdn.net/qq_43255017)## ...