A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K componentswhere K is the number of connected components in the graph.

Sample Input 1:

5
1 2
1 3
1 4
2 5

Sample Output 1:

3
4
5

Sample Input 2:

5
1 3
1 4
2 5
3 4

Sample Output 2:

Error: 2 components
 #include <iostream>
#include <vector>
#include<set>
using namespace std;
vector<vector<int>>G;
int N, maxH = ;
bool visit[];
set<int>res;
vector<int>temp; void DFS(int node, int H)
{
if (H > maxH)
{
temp.clear();
temp.push_back(node);//更新新的根节点
maxH = H;
}
else if (H == maxH)
temp.push_back(node);//相同的最优解
visit[node] = true;
for (int i = ; i < G[node].size(); ++i)
if (visit[G[node][i]] == false)
DFS(G[node][i], H + );
} int main()
{
int a, b, s1 = , cnt = ;
cin >> N;
G.resize(N+);
for (int i = ; i < N; ++i)
{
cin >> a >> b;
G[a].push_back(b);
G[b].push_back(a);
}
for (int i = ; i <= N; ++i)
{
if (visit[i] == false)//开始深度搜索遍历,如果是一个联通区域,则只会执行一次
{
DFS(i, );
if (i == )
{
if (temp.size() != )
s1 = temp[];
for (int j = ; j < temp.size(); ++j)
res.insert(temp[j]);
}
cnt++;//计算集合数
}
}
if (cnt != )
printf("Error: %d components\n", cnt);
else
{
temp.clear();
maxH = ;
fill(visit, visit + N + , false);
DFS(s1, );
for (int j = ; j < temp.size(); ++j)
res.insert(temp[j]);
for (auto r : res)
cout << r << endl;
}
return ;
}

PAT甲级——A1021 Deepest Root的更多相关文章

  1. PAT甲级1021. Deepest Root

    PAT甲级1021. Deepest Root 题意: 连接和非循环的图可以被认为是一棵树.树的高度取决于所选的根.现在你应该找到导致最高树的根.这样的根称为最深根. 输入规格: 每个输入文件包含一个 ...

  2. PAT 甲级 1021 Deepest Root

    https://pintia.cn/problem-sets/994805342720868352/problems/994805482919673856 A graph which is conne ...

  3. PAT 甲级 1021 Deepest Root (并查集,树的遍历)

    1021. Deepest Root (25) 时间限制 1500 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue A graph ...

  4. PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)

    1021 Deepest Root (25 分)   A graph which is connected and acyclic can be considered a tree. The heig ...

  5. PAT Advanced A1021 Deepest Root (25) [图的遍历,DFS,计算连通分量的个数,BFS,并查集]

    题目 A graph which is connected and acyclic can be considered a tree. The height of the tree depends o ...

  6. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  7. PAT A1021 Deepest Root (25 分)——图的BFS,DFS

    A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on th ...

  8. A1021. Deepest Root

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  9. [PAT] A1021 Deepest Root

    [题目大意] 给出n个结点和n-1条边,问它们能否形成一棵n个结点的树,如果能,从中选出结点作为树根,使整棵树的高度最大.输出所有满足要求的可以作为树根的结点. [思路] 方法一:模拟. 1 连通.边 ...

随机推荐

  1. day22_4-pickle模块

    # 参考资料:# python模块(转自Yuan先生) - 狂奔__蜗牛 - 博客园# https://www.cnblogs.com/guojintao/articles/9070485.html ...

  2. shell常用命令及正则辅助日志分析统计

    https://www.cnblogs.com/wj033/p/3451618.html 正则日志分析统计 3 grep 'onerror'  v3-0621.log | egrep  -v '(\d ...

  3. vue+element的el-menu组件实现路由跳转及当前项的设置

    <el-menu router :default-active="$route.path" class="el-menu-vertical-demo" @ ...

  4. <剑指offer>面试题

    题目1:二维数组的查找 题目:在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断 ...

  5. NoSQL SimpleDB

  6. UMP系统功能 资源隔离

  7. Linux-c对一个十六进制数的某一位取反

    enum SWITCH_FLAG { SWITCH_ALL_FLAG = , SWITCH_WEB_FLAG = , …… } unsigned int switch_by_bit_value = 0 ...

  8. 洛谷P3834【模板】可持久化线段树 1(主席树)

    题目背景 这是个非常经典的主席树入门题--静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输 ...

  9. python spark环境配置

              在配置Hadoop之前,应该先做以下配置   1.更改主机名 首先更改主机名,目的是为了方便管理.  输入:hostname  查看本机的名称  使用 hostname 修改当前主 ...

  10. 设置IDEA中properties文件显示中文

    路径: File - Setting - Editor - Code Style - File Encodings