题解【洛谷P3478】[POI2008]STA-Station
设\(dp_i\)表示以\(i\)为根节点时所有节点的深度之和。
首先以 \(1\) 为根求出所有点深度之和\(dp_1\),并预处理每个点的子树大小。
设 \(v\) 是 \(u\) 的孩子,考虑根从 \(u\) 移动到 \(v\) 对 \(dp_v\) 产生的影响。
不难发现,\(v\) 子树内所有点深度 \(−1\),其余点深度 \(+1\)。
即 \(dp_v = dp_u − size_v + (n − size_v)\)。
再 \(\text{DFS}\) 一次即可求出所有的 \(dp_i\)。
注意开\(\text{long long}\)。
代码如下:
#include <bits/stdc++.h>
#define itn int
#define gI gi
#define int long long
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
const int maxn = 1000003;
int n, m, head[maxn], ver[maxn * 2], nxt[maxn * 2], tot;
int sz[maxn], dp[maxn], dep[maxn], ans, cnt, sum;
inline void add(int u, int v) {ver[++tot] = v, nxt[tot] = head[u], head[u] = tot;}
void dfs1(int u, int f)
{
dep[u] = dep[f] + 1, sz[u] = 1;
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs1(v, u);
sz[u] += sz[v];
}
}
void dfs2(int u, int f)
{
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dp[v] = dp[u] + n - 2 * sz[v];
dfs2(v, u);
}
}
signed main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 1; i < n; i+=1)
{
int u = gi(), v = gi();
add(u, v), add(v, u);
}
dfs1(1, 0);
for (int i = 1; i <= n; i+=1) dp[1] += dep[i];
dfs2(1, 0);
for (int i = 1; i <= n; i+=1)
{
if (ans < dp[i]) ans = dp[i], cnt = i;
}
printf("%lld\n", cnt);
return 0;
}
题解【洛谷P3478】[POI2008]STA-Station的更多相关文章
- 洛谷 P3478 [POI2008]STA-Station
题目描述 The first stage of train system reform (that has been described in the problem Railways of the ...
- 洛谷P3478 [POI2008]STA-Station
P3478 [POI2008]STA-Station 题目描述 The first stage of train system reform (that has been described in t ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
- BZOJ1123或洛谷3469 [POI2008]BLO-Blockade
BZOJ原题链接 洛谷原题链接 若第\(i\)个点不是割点,那么只有这个点单独形成一个连通块,其它点依旧连通,则答案为\(2\times (n-1)\). 若第\(i\)个点是割点,那么去掉这个点相关 ...
随机推荐
- JavaScript中条件分支语句和循环语句的使用,用简洁的代码实现强大功能
if() else if() else() alert() 弹出警告框 prompt() 输入框,确定:返回输入信息:取消:返回null <!DOCTYPE html> <ht ...
- 纪中21日c组T2 2117. 【2016-12-30普及组模拟】台风
2117. 台风 (File IO): input:storm.in output:storm.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Proble ...
- 转换:使用vue-axios和vue-resource解决vue中调用网易云接口跨域的问题
本人配置成功https://segmentfault.com/a/1190000011072725
- AE工程渲染的时间缓慢,两种方法减少对AE工程渲染的时间!
AE工程渲染的时间缓慢,两种方法减少对AE工程渲染的时间!3秒的片头,渲染时间竟然要花1个多小时,很多新手都产生过这样的疑问?是哪里不对吗?如何才能减少渲染视频的时间?且听我一一道来.主要原因是:工程 ...
- git文件冲突合并的报错:Your local changes to the following files would be overwritten by merge
记录一下在项目里使用git遇到代码冲突时的解决方法 问题:当我和我同事两个人改了相同的一个文件,他在我提交前提交了,这时候我就提交不了了,并且也pull不下来他的代码 会报错: Your local ...
- 信息物理融合CPS
在阅读了自动化学报的信息物理融合专刊的两篇文章李洪阳老师等发表的<信息物理系统技术综述>一文对信息物理融合有了一个初步的了解.链接附后. 信息物理融合从字面上看好像是软件和硬件系统的融合, ...
- ES6--函数的参数
参数展开(扩展) 1.收集剩余的参数 function show(a, b, ...args) { console.log(a); console.log(b); console.log(args); ...
- 台大郭彦甫MATLAB教学-个人笔记(一)
命令和一些特殊的变量 who:查看有哪些变量1. whos:可以查看变量的大小.字节和类型等资料. clear:如果单独使用则是清空所有命令,若后面跟着一个变量名称则为删除此变量. clc:清空命令行 ...
- 关于全球唯一标识GUID的生成
1.c#生成GUID的几种方式 (1)生成标准的标志符 (36位标准) var strguid = Guid.NewGuid().ToString(); 结果:B2A5AB40-EE29-4791-9 ...
- StarUML 2下载、安装、破解全过程
StarUML官方下载地址: http://staruml.io/download 破解: 1.使用Editplus或者Notepad++等特殊的文本编辑器打开 安装位置下/www/lic ...