The path

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 995    Accepted Submission(s): 419
Special Judge

Problem Description
You have a connected directed graph.Let d(x) be the length of the shortest path from 1 to x.Specially d(1)=0.A graph is good if there exist x satisfy d(1)<d(2)<....d(x)>d(x+1)>...d(n).Now you need to set the length of every edge satisfy that the graph is good.Specially,if d(1)<d(2)<..d(n),the graph is good too.
The length of one edge must ∈ [1,n]
It's guaranteed that there exists solution.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and m,the number of vertexs and the number of edges.Next m lines contain two integers each, ui and vi (1≤ui,vi≤n), indicating there is a link between nodes ui and vi and the direction is from ui to vi.
∑n≤3∗105,∑m≤6∗105
1≤n,m≤105
Output
For each test case,print m lines.The i-th line includes one integer:the length of edge from ui to vi
Sample Input
2
4 6
1 2
2 4
1 3
1 2
2 2
2 3
4 6
1 2
2 3
1 4
2 1
2 1
2 1
Sample Output
1
2
2
1
4
4
1
1
3
4
4
4
Author
SXYZ
Source
题目大意:给定一张n个点m条有向边的图,构造每条边的边权(边权为正整数),令d(x)表示1到x的最短路,使得存在点i(1<=i<=n)满足d(1)<d(2)<…<d(i)>d(i+1)>…>d(n)。
分析:有关最短路的构造题,和hdu4903有点类似,都是事先确定最短路再来构造边权.
   首先,令每个点的最短路都在[0,n-1]区间内,并且每个点的最短路都不一样.如果能够能够使所有点的最短路都合理,那么对于一条边所连的点u,v,只需要这条边的权值等于abs(d(v) - d(u))即可.这就能满足最短路的要求.
   接下来是要使得最短路合理.从两边向中间构造,维护两个指针l,r和一个计数器cnt,一开始l = 2,r = n.先设d[1] = 0,将1号点连边指向的点都打上标记.接着从l,r指针指向的点中选一个打上标记的点,那么这个点的d值就是++cnt.然后把这个点连边所指向的点都打上标记,并且向中间移动指针.因为题目保证有解,所以每次必然有一个指针能够移动.
   这样做是使得这些点到1的最短路合理,如果直接胡乱分配d,设定边权,那么可能只是这条边是最短路上的边,但实际上这些点到1的最短路并不一定是分配好的d.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm> using namespace std; const int maxn = ; int T,n,m,head[maxn],nextt[maxn],to[maxn],tot = ,d[maxn],cnt;
bool vis[maxn]; struct node
{
int x,y,w;
}e[]; void add(int x,int y)
{
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++;
} int main()
{
scanf("%d",&T);
while (T--)
{
memset(head,,sizeof(head));
memset(vis,false,sizeof(vis));
memset(d,,sizeof(d));
cnt = ;
tot = ;
scanf("%d%d",&n,&m);
for (int i = ; i <= m; i++)
{
scanf("%d%d",&e[i].x,&e[i].y);
add(e[i].x,e[i].y);
}
d[] = ;
for (int i = head[];i;i = nextt[i])
{
int v = to[i];
vis[v] = ;
}
int l = ,r = n;
while (cnt < n)
{
int u;
if (vis[l])
u = l++;
else
u = r--;
d[u] = cnt++;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
vis[v] = ;
}
}
for (int i = ; i <= m; i++)
{
if(e[i].x == e[i].y)
printf("%d\n",n);
else
printf("%d\n",abs(d[e[i].x] - d[e[i].y]));
}
} return ;
}

Hdu5385 The path的更多相关文章

  1. NodeJs之Path

    Path模块 NodeJs提供的Path模块,使得我们可以对文件路径进行简单的操作. API var path = require('path'); var path_str = '\\Users\\ ...

  2. 【原】实时渲染中常用的几种Rendering Path

    [原]实时渲染中常用的几种Rendering Path 本文转载请注明出处 —— polobymulberry-博客园 本文为我的图形学大作业的论文部分,介绍了一些Rendering Path,比较简 ...

  3. Node.js:path、url、querystring模块

    Path模块 该模块提供了对文件或目录路径处理的方法,使用require('path')引用. 1.获取文件路径最后部分basename 使用basename(path[,ext])方法来获取路径的最 ...

  4. VSCode调试go语言出现:exec: "gcc": executable file not found in %PATH%

    1.问题描述 由于安装VS15 Preview 5,搞的系统由重新安装一次:在用vscdoe编译go语言时,出现以下问题: # odbcexec: "gcc": executabl ...

  5. Leetcode 笔记 113 - Path Sum II

    题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...

  6. Leetcode 笔记 112 - Path Sum

    题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...

  7. Thinking in Unity3D:渲染管线中的Rendering Path

      关于<Thinking in Unity3D> 笔者在研究和使用Unity3D的过程中,获得了一些Unity3D方面的信息,同时也感叹Unity3D设计之精妙.不得不说,笔者最近几年的 ...

  8. node之path模块

    node之path模块 原文链接 //引用该模块 var path = require("path"); 1.路径解析,得到规范化的路径格式 对window系统,目录分隔为'', ...

  9. Linux系统修改PATH环境变量方法

    在Linux安装一些软件通常要添加路径环境变量PATH.PATH环境变量通俗的讲就是把程序的路径"备案"到系统中,这样执行这些程序时就不需要输入完整路径,直接在bash输入程序名就 ...

随机推荐

  1. 挂载报错:“/dev/vda1 is apparently in use by the system;”

    挂载报错:“/dev/vda1 is apparently in use by the system;” 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 距离回家倒计时还有一天,明天 ...

  2. 了解Linux操作系统的引导过程

    原文地址:http://os.51cto.com/art/200706/49690.htm 1.简介 Linux启动过程指的是从加电到看到shell提示的这一段时间. Linux启动的过程可以大概分为 ...

  3. Java日期比较

    在进行业务处理时,遇到一个需要比较日期但是不包含时分秒的判断问题 SimpleDateFormat f = new SimpleDateFormat("yyyy-MM-dd"); ...

  4. MongoDB-3.4搭建副本集

    搭建副本集 1:首先创建3台虚拟机作为配置环境 IP1:192.168.101.175 IP2:192.168.101.176 IP3:192.168.101.177 2.下载MongoDB 3.4版 ...

  5. [转载]10款流行的Markdown编辑器

    10款流行的Markdown编辑器 http://www.csdn.net/article/2014-05-05/2819623 作为一个开源人,如果你不会使用Markdown语法,那你就OUT了!M ...

  6. [整] Android ListView 去除边缘阴影、选中色、拖动背景色等

    以下是通过XML定义的方式实现,如果需要通过代码实现,找到对应是set方式设置即可. 去除ListView滑到顶部和底部时边缘的黑色阴影: android:fadingEdge="none& ...

  7. AngularJs -- 模 块

    在JavaScript中,将函数代码全部定义在全局命名空间中绝对不是什么好主意,这样做会导致冲突从而是调试变得非常困难,浪费宝贵的时间. 上一章介绍数据绑定时,就是写在全局命名空间中定义的函数. 在A ...

  8. 2016-2017-2 20155309 南皓芯java第六周学习总结

    教材内容详解 这一次主要学习的是第十章与第十一章的内容.主要讲述了串流,字符处理和线程以及并行API. 输入输出 串流:Java中的数据有来源(source)和目的地(destination),衔接两 ...

  9. matrix 矩阵(多维DP)

    题面 \(solution:\) 这一题其实就是一个非常明显的三维背包问题(但博主太弱了就10分QAQ) \(F[i][j][k]:\)表示走到\((i,j)\)这个位置并且背包容量为 \(k\) 时 ...

  10. 阿里云配置 https 证书

    阿里云配置中心 https://yundun.console.aliyun.com/?p=cas#/cas/home 证书审核通过后复制到 ecs scp /path/filename usernam ...