Block Art

题目连接:

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/block-art

Description

The NeoCubist artistic movement has a very distinctive approach to art. It starts with a rectangle which is divided into a number of squares. Then multiple rounds of layering and scraping occur. In a layering round, a rectangular region of this canvas is selected and a layer of cubes, 1 cube deep, is added to the region. In a scraping round, a rectangular region of the canvas is selected, and a layer of cubes, again 1 cube deep, is removed.

The famous artist I.M. Blockhead seeks your help during the creation of this artwork. As he is creating his art, he is curious to know how many blocks are in different regions of the canvas.

Your task is to write a program that tracks the creation of a work of Pseudo-Cubist art, and answers I.M.’s periodic queries about the number of blocks that are on the canvas. Consider, for example, the following artwork created on a canvas with 5 rows and 15 columns or squares. The canvas starts without any blocks, like in the figure below. We label cells in the canvas based on the tuple (row,column), with the upper left corner being designated (1,1). The numbers in each cell represent the height of the blocks in that cell.

fig1.jpg

After adding a layer in blocks to the rectangle with upper left corner at (2,3) and a lower right corner of (4, 10), the canvas now looks like the following:

fig2.jpg

After adding a layer of blocks in the rectangle with upper left corner at (3,8) and a lower right corner of (5, 15), the canvas now looks like the following:

fig3.jpg

If Blockhead were to ask how many blocks are currently in the artwork in the rectangle with upper left corner (1,1) and lower right corner (5,15), you would tell him 48.

Now, if we remove a layer of blocks from the rectangle with upper left corner at (3,6) and a lower right corner of (4, 12), the canvas now looks like the following:

fig4.jpg

If Blockhead were to ask how many blocks are now in the artwork in the rectangle with upper left corner (3,5) and lower right corner (4,13), you would tell him 10.

“Beautiful!” exclaims Blockhead.

Input

The first line in each test case are two integers r and c, 1 <= r <= 12, 1 <= c <= 106, where r is the number of rows and c is the number of columns in the canvas.

The next line of input contains an integer n, 1 <= n <= 104.

The following n lines of input contain operations and queries done on the initially empty canvas. The operations will be in the following format:

[operation] [top left row] [top left column] [bottom right row] [bottom right column]

[operation] is a character, either “a” when a layer of blocks is being added, “r” when a layer of blocks is being removed, and “q” when Blockhead is asking you for the number of blocks in a region.

The remaining values on the line correspond to the top left and bottom right corners of the rectangle.

Note: You will never be asked to remove a block from a cell that has no blocks in it.

Output

For each “q” operation in the input, you should output, on a line by itself, the number of blocks in the region of interest.

Sample Input

5 15

5

a 2 3 4 10

a 3 8 5 15

q 1 1 5 15

r 3 6 4 12

q 3 5 4 13

Sample Output

48

10

Hint

题意

给你一个矩形,然后你需要维护三个操作

使得一个矩形区域都加1,使得一个矩形区域减一,查询一个矩形区域的和

题解

仔细观察可以知道,这个矩形的宽才12,所以直接暴力一维线段树就好了。

二维线段树会mle

所以我们对于每一行都单独处理就好了,这样就能把空间省下来。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;
struct node{
typedef int SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType sum , lazy;
void update(SgTreeDataType v)
{
sum += (R-L+1)*v;
lazy += v;
}
}; treenode tree[maxn*4]; inline void push_down(int o)
{
SgTreeDataType lazyval = tree[o].lazy;
tree[2*o].update(lazyval) ; tree[2*o+1].update(lazyval);
tree[o].lazy = 0;
} inline void push_up(int o)
{
tree[o].sum = tree[2*o].sum + tree[2*o+1].sum;
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum = tree[o].lazy = 0;
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
}
} inline void update(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].update(v);
else
{
push_down(o);
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
} inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>1;
SgTreeDataType res = 0;
if (QL <= mid) res += query(QL,QR,2*o);
if (QR > mid) res += query(QL,QR,2*o+1);
push_up(o);
return res;
}
}
}T;
int r,c;
int ans[10005];
string op[10005];
int x1[10005],Y1[10005],x2[10005],y2[10005];
int main()
{
scanf("%d%d",&r,&c);
int m;scanf("%d",&m);
for(int i=1;i<=m;i++)
cin>>op[i],scanf("%d%d%d%d",&x1[i],&Y1[i],&x2[i],&y2[i]);
for(int i=1;i<=r;i++){
T.build_tree(1,c,1);
for(int j=1;j<=m;j++){
if(x1[j]<=i&&i<=x2[j]){
if(op[j][0]=='q')ans[j]+=T.query(Y1[j],y2[j],1);
if(op[j][0]=='a')T.update(Y1[j],y2[j],1,1);
if(op[j][0]=='r')T.update(Y1[j],y2[j],-1,1);
}
}
}
for(int i=1;i<=m;i++)
if(op[i][0]=='q')
cout<<ans[i]<<endl; }

Xtreme9.0 - Block Art 线段树的更多相关文章

  1. HDU5023:A Corrupt Mayor's Performance Art(线段树区域更新+二进制)

    http://acm.hdu.edu.cn/showproblem.php?pid=5023 Problem Description Corrupt governors always find way ...

  2. hdu 5023 A Corrupt Mayor's Performance Art 线段树

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  3. hdu----(5023)A Corrupt Mayor's Performance Art(线段树区间更新以及区间查询)

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  4. HDU 5023 A Corrupt Mayor's Performance Art 线段树区间更新+状态压缩

    Link:  http://acm.hdu.edu.cn/showproblem.php?pid=5023 #include <cstdio> #include <cstring&g ...

  5. 线段树 poj 1436

    题目大意:给出n条垂直于x轴的线段的数据y1,y2,x,求出有几个三条线段一组的三元组并且他们兩兩能相见的.思路:对y轴建树,将x排序,然后按顺序边询问边擦入,用mark[i][j]表示j往左可以看到 ...

  6. zkw线段树详解

    转载自:http://blog.csdn.net/qq_18455665/article/details/50989113 前言 首先说说出处: 清华大学 张昆玮(zkw) - ppt <统计的 ...

  7. HDU4288 Coder(线段树)

    注意添加到集合中的数是升序的,先将数据读入,再离散化. sum[rt][i]表示此节点的区域位置对5取模为i的数的和,删除一个数则右边的数循环左移一位,添加一个数则右边数循环右移一位,相当于循环左移4 ...

  8. HDU4288:Coder(线段树单点更新版 && 暴力版)

    Problem Description In mathematics and computer science, an algorithm describes a set of procedures ...

  9. hdu4419 Colourful Rectangle 12年杭州网络赛 扫描线+线段树

    题意:给定n个矩形,每个矩形有一种颜色,RGB中的一种.相交的部分可能为RG,RB,GB,RGB,问这n个矩形覆盖的面积中,7种颜色的面积分别为多少 思路:把x轴离散化做扫描线,线段树维护一个扫描区间 ...

随机推荐

  1. 何凯文每日一句打卡||DAY14

  2. PythonCharm 配置本地反向代理激活

    以下方法仅做学习使用,如果条件允许,请自行购买正版软件,做开发的都知道软件开发出来不容易,能够支持就支持正版吧 首先去官网 下载 自己需要的 PYCHARM 版本 安装完启动会提示要激活, 选择 li ...

  3. IOS 与 PHP 通信加密,使用AES 128 CBC no padding

    这个网上的资料真实浩如烟海,但是真正有价值的屈指可数 自己尝试了一天多,终于还是搞定了. 再次要感谢网上的前辈么. 比如下面这个关于php和java端的实现: http://my.oschina.ne ...

  4. ACM数据对拍程序

    #include<cstdio> #include<cstdlib> #include<ctime> int main() { long s,t; while(1) ...

  5. CentOS下配置MySQL允许root用户远程登录

    1.常用命令: 安装上传下载文件命令yum install lrzsz安装webget工具yum -y install wget ----------------------------------- ...

  6. 远程不能访问CentOS的tomcat 8080端口

    一般认为是CentOS的iptabls防火墙的问题,方法如下: ps -ef | grep tomcat ker 4399 1 6 21:46 pts/1 00:00:01 /usr/java/jdk ...

  7. !!!sql_mode=only_full_group_by配置

    Expression #7 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'invoicecer ...

  8. jenkins免密添加SSH Servers

    在配置ssh server时可以使用用户名秘密的方式登录,但有点不安全,只要有权限配置jenkins服务器的人就可以看到密码.所以可以利用ssh免密登录的方式链接ssh server. 1.在jenk ...

  9. 阿里云url解析,发布web后去除url中的端口号

    归根结底就是80端口的使用,不是http的80 的 或 https的  都得加端口号 [问题描述] http://wisecores.wisers.com:8080/JsonProject/servl ...

  10. DDD领域模型企业级系统Unity(五)

    添加程序集: 写一个接口: public interface IPlayer { void Play(); } 两个实现类: public class NewPlay : IPlayer { publ ...