Block Art

题目连接:

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/block-art

Description

The NeoCubist artistic movement has a very distinctive approach to art. It starts with a rectangle which is divided into a number of squares. Then multiple rounds of layering and scraping occur. In a layering round, a rectangular region of this canvas is selected and a layer of cubes, 1 cube deep, is added to the region. In a scraping round, a rectangular region of the canvas is selected, and a layer of cubes, again 1 cube deep, is removed.

The famous artist I.M. Blockhead seeks your help during the creation of this artwork. As he is creating his art, he is curious to know how many blocks are in different regions of the canvas.

Your task is to write a program that tracks the creation of a work of Pseudo-Cubist art, and answers I.M.’s periodic queries about the number of blocks that are on the canvas. Consider, for example, the following artwork created on a canvas with 5 rows and 15 columns or squares. The canvas starts without any blocks, like in the figure below. We label cells in the canvas based on the tuple (row,column), with the upper left corner being designated (1,1). The numbers in each cell represent the height of the blocks in that cell.

fig1.jpg

After adding a layer in blocks to the rectangle with upper left corner at (2,3) and a lower right corner of (4, 10), the canvas now looks like the following:

fig2.jpg

After adding a layer of blocks in the rectangle with upper left corner at (3,8) and a lower right corner of (5, 15), the canvas now looks like the following:

fig3.jpg

If Blockhead were to ask how many blocks are currently in the artwork in the rectangle with upper left corner (1,1) and lower right corner (5,15), you would tell him 48.

Now, if we remove a layer of blocks from the rectangle with upper left corner at (3,6) and a lower right corner of (4, 12), the canvas now looks like the following:

fig4.jpg

If Blockhead were to ask how many blocks are now in the artwork in the rectangle with upper left corner (3,5) and lower right corner (4,13), you would tell him 10.

“Beautiful!” exclaims Blockhead.

Input

The first line in each test case are two integers r and c, 1 <= r <= 12, 1 <= c <= 106, where r is the number of rows and c is the number of columns in the canvas.

The next line of input contains an integer n, 1 <= n <= 104.

The following n lines of input contain operations and queries done on the initially empty canvas. The operations will be in the following format:

[operation] [top left row] [top left column] [bottom right row] [bottom right column]

[operation] is a character, either “a” when a layer of blocks is being added, “r” when a layer of blocks is being removed, and “q” when Blockhead is asking you for the number of blocks in a region.

The remaining values on the line correspond to the top left and bottom right corners of the rectangle.

Note: You will never be asked to remove a block from a cell that has no blocks in it.

Output

For each “q” operation in the input, you should output, on a line by itself, the number of blocks in the region of interest.

Sample Input

5 15

5

a 2 3 4 10

a 3 8 5 15

q 1 1 5 15

r 3 6 4 12

q 3 5 4 13

Sample Output

48

10

Hint

题意

给你一个矩形,然后你需要维护三个操作

使得一个矩形区域都加1,使得一个矩形区域减一,查询一个矩形区域的和

题解

仔细观察可以知道,这个矩形的宽才12,所以直接暴力一维线段树就好了。

二维线段树会mle

所以我们对于每一行都单独处理就好了,这样就能把空间省下来。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;
struct node{
typedef int SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType sum , lazy;
void update(SgTreeDataType v)
{
sum += (R-L+1)*v;
lazy += v;
}
}; treenode tree[maxn*4]; inline void push_down(int o)
{
SgTreeDataType lazyval = tree[o].lazy;
tree[2*o].update(lazyval) ; tree[2*o+1].update(lazyval);
tree[o].lazy = 0;
} inline void push_up(int o)
{
tree[o].sum = tree[2*o].sum + tree[2*o+1].sum;
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum = tree[o].lazy = 0;
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
}
} inline void update(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].update(v);
else
{
push_down(o);
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
} inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>1;
SgTreeDataType res = 0;
if (QL <= mid) res += query(QL,QR,2*o);
if (QR > mid) res += query(QL,QR,2*o+1);
push_up(o);
return res;
}
}
}T;
int r,c;
int ans[10005];
string op[10005];
int x1[10005],Y1[10005],x2[10005],y2[10005];
int main()
{
scanf("%d%d",&r,&c);
int m;scanf("%d",&m);
for(int i=1;i<=m;i++)
cin>>op[i],scanf("%d%d%d%d",&x1[i],&Y1[i],&x2[i],&y2[i]);
for(int i=1;i<=r;i++){
T.build_tree(1,c,1);
for(int j=1;j<=m;j++){
if(x1[j]<=i&&i<=x2[j]){
if(op[j][0]=='q')ans[j]+=T.query(Y1[j],y2[j],1);
if(op[j][0]=='a')T.update(Y1[j],y2[j],1,1);
if(op[j][0]=='r')T.update(Y1[j],y2[j],-1,1);
}
}
}
for(int i=1;i<=m;i++)
if(op[i][0]=='q')
cout<<ans[i]<<endl; }

Xtreme9.0 - Block Art 线段树的更多相关文章

  1. HDU5023:A Corrupt Mayor's Performance Art(线段树区域更新+二进制)

    http://acm.hdu.edu.cn/showproblem.php?pid=5023 Problem Description Corrupt governors always find way ...

  2. hdu 5023 A Corrupt Mayor's Performance Art 线段树

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  3. hdu----(5023)A Corrupt Mayor's Performance Art(线段树区间更新以及区间查询)

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  4. HDU 5023 A Corrupt Mayor's Performance Art 线段树区间更新+状态压缩

    Link:  http://acm.hdu.edu.cn/showproblem.php?pid=5023 #include <cstdio> #include <cstring&g ...

  5. 线段树 poj 1436

    题目大意:给出n条垂直于x轴的线段的数据y1,y2,x,求出有几个三条线段一组的三元组并且他们兩兩能相见的.思路:对y轴建树,将x排序,然后按顺序边询问边擦入,用mark[i][j]表示j往左可以看到 ...

  6. zkw线段树详解

    转载自:http://blog.csdn.net/qq_18455665/article/details/50989113 前言 首先说说出处: 清华大学 张昆玮(zkw) - ppt <统计的 ...

  7. HDU4288 Coder(线段树)

    注意添加到集合中的数是升序的,先将数据读入,再离散化. sum[rt][i]表示此节点的区域位置对5取模为i的数的和,删除一个数则右边的数循环左移一位,添加一个数则右边数循环右移一位,相当于循环左移4 ...

  8. HDU4288:Coder(线段树单点更新版 && 暴力版)

    Problem Description In mathematics and computer science, an algorithm describes a set of procedures ...

  9. hdu4419 Colourful Rectangle 12年杭州网络赛 扫描线+线段树

    题意:给定n个矩形,每个矩形有一种颜色,RGB中的一种.相交的部分可能为RG,RB,GB,RGB,问这n个矩形覆盖的面积中,7种颜色的面积分别为多少 思路:把x轴离散化做扫描线,线段树维护一个扫描区间 ...

随机推荐

  1. springmvc常用注解标签详解-推荐

    1.@Controller 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理层处理之后封装成一个Model ...

  2. Anaconda+django写出第一个web app(七)

    今天来实现如何在页面弹出一些信息,比如注册成功后弹出注册成功的信息.这一点可以通过materialize里的Toasts来实现. django自带的messages可以告诉我们是否注册成功,以及注册失 ...

  3. MongoDB 之 "$" 的奇妙用法 MongoDB - 5

    在MongoDB中有一个非常神奇的符号 "$" "$"  在 update 中 加上关键字 就 变成了 修改器 其实 "$" 字符 独立出现 ...

  4. 工具类。父类(Pom文件)

    ego_parent(pom文件) <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht ...

  5. mybatis一对多关联查询——(九)

    1.需求: 查询所有订单信息及订单下的订单明细信息. 订单信息与订单明细为一对多关系. 2.      sql语句 确定主查询表:订单表 确定关联查询表:订单明细表 在一对一查询基础上添加订单明细表关 ...

  6. gitminer

    https://github.com/UnkL4b/GitMiner + Autor: UnK + Blog: https://unkl4b.github.io + Github: https://g ...

  7. 关于Hadoop未授权访问可导致数据泄露通知

    尊敬的腾讯云客户: 您好!近日,外部媒体报道全球Hadoop服务器因配置不安全导致海量数据泄露,涉及使用Hadoop分布式文件系统(HDFS)的近4500台服务器,数据量高达5120 TB (5.12 ...

  8. python数据库操作 - MySQL入门【转】

    python数据库操作 - MySQL入门 python学院 2017-02-05 16:22 PyMySQL是Python中操作MySQL的模块,和之前使用的MySQLdb模块基本功能一致,PyMy ...

  9. 首发:极简的Centos主机监控方法,分分钟即可使用【转】

    需求天天有,今年事更多.硬盘测试刚刚完成,就又来了性能监控的需求.一般我们生产就用zabbix了,用起来还行,就是蛮多脚本要写.开发和测试都是分散的,经常还要重装系统,用zabbix就算了,开发和测试 ...

  10. Python学习五|集合、布尔、字符串的一些特点

    #集合本身就像无值的字典 list1 = set([1,2,3,4]) list2 = {1,2,3,4} print('list1 == list2?:',list1==list2)#list1 = ...