1 问题的引出

对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示:

手动求解

目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainSet,{(1,1),(2,2),(3,3)}通过手动寻找来找到最优解,由图可见当θ1取1时,与y(i)完全重合,J(θ1) = 0

下面是θ1的取值与对应的J(θ1)变化情况

由此可见,最优解即为0,现在来看通过梯度下降法来自动找到最优解,对于上述待优化问题,下图给出其三维图像,可见要找到最优解,就要不断向下探索,使得J(θ)最小即可。

2 梯度下降的几何形式

下图为梯度下降的目的,找到J(θ)的最小值。

其实,J(θ)的真正图形是类似下面这样的,因为其是一个凸函数,只有一个全局最优解,所以不必担心像上图一样找到局部最优解

直到了要找到图形中的最小值之后,下面介绍自动求解最小值的办法,这就是梯度下降法

对参数向量θ中的每个分量θj,迭代减去速率因子a* (dJ(θ)/dθj)即可,后边一项为J(θ)关于θj的偏导数

3 梯度下降的原理

导数的概念

由公式可见,对点x0的导数反映了函数在点x0处的瞬时变化速率,或者叫在点x0处的斜度。推广到多维函数中,就有了梯度的概念,梯度是一个向量组合,反映了多维图形中变化速率最快的方向。

下图展示了对单个特征θ1的直观图形,起始时导数为正,θ1减小后并以新的θ1为基点重新求导,一直迭代就会找到最小的θ1,若导数为负时,θ1的就会不断增到,直到找到使损失函数最小的值。

有一点需要注意的是步长a的大小,如果a太小,则会迭代很多次才找到最优解,若a太大,可能跳过最优,从而找不到最优解。

另外,在不断迭代的过程中,梯度值会不断变小,所以θ1的变化速度也会越来越慢,所以不需要使速率a的值越来越小

下图就是寻找过程

当梯度下降到一定数值后,每次迭代的变化很小,这时可以设定一个阈值,只要变化小鱼该阈值,就停止迭代,而得到的结果也近似于最优解。

若损失函数的值不断变大,则有可能是步长速率a太大,导致算法不收敛,这时可适当调整a值

为了选择参数a,就需要不断测试,因为a太大太小都不太好。

如果想跳过的a与算法复杂的迭代,可以选择 Normal Equation。

4 随机梯度下降

对于样本数量额非常之多的情况,Batch Gradient Descent算法会非常耗时,因为每次迭代都要便利所有样本,可选用Stochastic Gradient Descent 算法,需要注意外层循环Loop,因为只遍历一次样本,不见得会收敛。

随机梯度算法就可以用作在线学习了,但是注意随机梯度的结果并非完全收敛,而是在收敛结果处波动的,可能由非线性可分的样本引起来的:

可以有如下解决办法:(来自MLIA)

1. 动态更改学习速率a的大小,可以增大或者减小

2. 随机选样本进行学习

CS229 2.深入梯度下降(Gradient Descent)算法的更多相关文章

  1. (二)深入梯度下降(Gradient Descent)算法

    一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...

  2. 梯度下降(gradient descent)算法简介

    梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...

  3. 机器学习(1)之梯度下降(gradient descent)

    机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...

  4. 梯度下降(Gradient Descent)小结 -2017.7.20

    在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training se ...

  5. 梯度下降(Gradient descent)

    首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间 ...

  6. 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)

    版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...

  7. 回归(regression)、梯度下降(gradient descent)

    本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...

  8. 吴恩达深度学习:2.3梯度下降Gradient Descent

    1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输 ...

  9. 机器学习数学基础- gradient descent算法(上)

    为什么要了解点数学基础 学习大数据分布式计算时多少会涉及到机器学习的算法,所以理解一些机器学习基础,有助于理解大数据分布式计算系统(比如spark)的设计.机器学习中一个常见的就是gradient d ...

随机推荐

  1. 解决Ecipse和搜狗输入法快捷键冲突问题

    非常简单,关闭掉搜狗输入的所有快捷键!

  2. Executor与ExecutorService

    ExecutorService 接口继承了 Executor 接口,是 Executor 的子接口. Executor 接口定义了 execute()方法用来接收一个Runnable接口的对象,而 E ...

  3. spring-AOP框架(基于配置文件的方式配置AOP)

    .xml: ref-指向,order-指定优先级

  4. kafka_2.11-0.8.2.1生产者producer的Java实现

    转载自:http://blog.csdn.net/ch717828/article/details/50818261 1. 开启Kafka Consumer 首先选择集群的一台机器,打开kafka c ...

  5. 使用shell脚本批处理控制大数据环境服务启动停止

    三台集群机器: master   192.168.168.200 slave1     192.168.168.201 slave2     192.168.168.202 1.start-maste ...

  6. linux zip删除指定文件和追加文件

    使用zip命令的-d参数即可删除zip包中的特定文件. 示例:假设有test.zip,包含_code(目录)._code.zip.readme.txt三个文件,现在要删除test.zip中的_code ...

  7. java小程序(课堂作业02)

    1,三种方法计算组合数 ①设计思路:第一种方法就是通过阶乘公式然后运用公式计算出组合数,第二种通过公式推导出cnk=n/(n-k)cnk-1,然后然后从ckk 开始运算到cnk,第三种方法就是通过递归 ...

  8. oracle rename数据文件的两种方法

    oracle rename数据文件的两种方法 2012-12-11 20:44 10925人阅读 评论(0) 收藏 举报  分类: oracle(98)  版权声明:本文为博主原创文章,未经博主允许不 ...

  9. Linux 如何测试 IO 性能(磁盘读写速度)

    这几天做MySQL性能测试,偌大一个公司,找几台性能测试机器都很纠结,终于协调到两台,IO的性能如何还不知道.数据库属于IO密集型的应用,所以还是先评估下Server的IO性能,看看是否能和线上的机器 ...

  10. 超细讲解Django打造大型企业官网

    本文为知了课堂黄勇老师讲的<超细讲解Django打造大型企业官网>的笔记. 第一章 Django预热 1.创建virtualenv虚拟环境 2.URL组成部分详解 3.Django介绍 4 ...