CS229 2.深入梯度下降(Gradient Descent)算法
1 问题的引出
对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示:
手动求解
目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainSet,{(1,1),(2,2),(3,3)}通过手动寻找来找到最优解,由图可见当θ1取1时,与y(i)完全重合,J(θ1) = 0
下面是θ1的取值与对应的J(θ1)变化情况
由此可见,最优解即为0,现在来看通过梯度下降法来自动找到最优解,对于上述待优化问题,下图给出其三维图像,可见要找到最优解,就要不断向下探索,使得J(θ)最小即可。
2 梯度下降的几何形式
下图为梯度下降的目的,找到J(θ)的最小值。
其实,J(θ)的真正图形是类似下面这样的,因为其是一个凸函数,只有一个全局最优解,所以不必担心像上图一样找到局部最优解
直到了要找到图形中的最小值之后,下面介绍自动求解最小值的办法,这就是梯度下降法
对参数向量θ中的每个分量θj,迭代减去速率因子a* (dJ(θ)/dθj)即可,后边一项为J(θ)关于θj的偏导数
3 梯度下降的原理
导数的概念
由公式可见,对点x0的导数反映了函数在点x0处的瞬时变化速率,或者叫在点x0处的斜度。推广到多维函数中,就有了梯度的概念,梯度是一个向量组合,反映了多维图形中变化速率最快的方向。
下图展示了对单个特征θ1的直观图形,起始时导数为正,θ1减小后并以新的θ1为基点重新求导,一直迭代就会找到最小的θ1,若导数为负时,θ1的就会不断增到,直到找到使损失函数最小的值。
有一点需要注意的是步长a的大小,如果a太小,则会迭代很多次才找到最优解,若a太大,可能跳过最优,从而找不到最优解。
另外,在不断迭代的过程中,梯度值会不断变小,所以θ1的变化速度也会越来越慢,所以不需要使速率a的值越来越小
下图就是寻找过程
当梯度下降到一定数值后,每次迭代的变化很小,这时可以设定一个阈值,只要变化小鱼该阈值,就停止迭代,而得到的结果也近似于最优解。
若损失函数的值不断变大,则有可能是步长速率a太大,导致算法不收敛,这时可适当调整a值
为了选择参数a,就需要不断测试,因为a太大太小都不太好。
如果想跳过的a与算法复杂的迭代,可以选择 Normal Equation。
4 随机梯度下降
对于样本数量额非常之多的情况,Batch Gradient Descent算法会非常耗时,因为每次迭代都要便利所有样本,可选用Stochastic Gradient Descent 算法,需要注意外层循环Loop,因为只遍历一次样本,不见得会收敛。
随机梯度算法就可以用作在线学习了,但是注意随机梯度的结果并非完全收敛,而是在收敛结果处波动的,可能由非线性可分的样本引起来的:
可以有如下解决办法:(来自MLIA)
1. 动态更改学习速率a的大小,可以增大或者减小
2. 随机选样本进行学习
CS229 2.深入梯度下降(Gradient Descent)算法的更多相关文章
- (二)深入梯度下降(Gradient Descent)算法
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...
- 梯度下降(gradient descent)算法简介
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...
- 机器学习(1)之梯度下降(gradient descent)
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...
- 梯度下降(Gradient Descent)小结 -2017.7.20
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training se ...
- 梯度下降(Gradient descent)
首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- 吴恩达深度学习:2.3梯度下降Gradient Descent
1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输 ...
- 机器学习数学基础- gradient descent算法(上)
为什么要了解点数学基础 学习大数据分布式计算时多少会涉及到机器学习的算法,所以理解一些机器学习基础,有助于理解大数据分布式计算系统(比如spark)的设计.机器学习中一个常见的就是gradient d ...
随机推荐
- 记一个视频播放器插件 video.js
最近在看扣丁学堂上面的一些视频, 突然对他用的视频播放器有点兴趣, 他也是采用的 ts切片播放, 如果使用传统的video标签是无法实现的 他使用的插件叫做 video.js 官网地址 官网提供的播放 ...
- python通过xlwt模块直接在网页上生成excel文件并下载
urls: from django.conf.urls import url, include from . import views urlpatterns = [ ... url(r'^domai ...
- 在linux环境下,php语法出错,怎样让php编译后提示编译错误,错误在哪?
如果不具备修改php.ini的权限,可以如下:ini_set("display_errors", "On"); error_reporting(E_ALL | ...
- MySQL 5.7.16 字符串拆分 -> 单列变多行记录(转发)
http://blog.csdn.net/mchdba/article/details/53889803 ----------------------------------------------- ...
- Spring cloud和Dubbo
dubbo由于是二进制的传输,占用带宽会更少springCloud是http协议传输,带宽会比较多,同时使用http协议一般会使用JSON报文,消耗会更大 dubbo的开发难度较大,原因是dubbo的 ...
- VS项目平台的x86,x64,Any CPU以及Debug和Release
引用链接:https://blog.csdn.net/zuguangboy/article/details/51509670
- Android WebView 开发详解
Android WebView 开发详解 参见 http://blog.csdn.net/typename/article/details/39030091
- bzoj2909: Bipartite Numbers
Description Bipartite Number是这样的一个正整数,他只能由两段相同的数组成,如44444411,10000000, 5555556,41,而4444114,44444则不是. ...
- AWS机器学习初探(1):Comprehend - 自然语言处理服务
AWS机器学习初探(1):Comprehend - 自然语言处理服务 1. Comprehend 服务简介 1.1 功能 Amazon Comprehend 服务利用自然语言处理(NLP)来分析文本. ...
- 学习笔记之GenFu
Everybody was GenFu Fighting - GenFu http://genfu.io/ GenFu is a test and prototype data generation ...