洛谷 P3749: LOJ 2146: [SHOI2017]寿司餐厅
题目传送门:LOJ #2146。
题意简述:
有 \(n\) 种寿司,第 \(i\) 种寿司的类型为 \(a_i\)。
如果你吃了第 \(i\) 种到第 \(j\) 种寿司,你会得到 \(d_{i,j}\)(\(i\le j\))的收益。
如果你吃了 \(c\)(\(c>0\))种类型为 \(x\) 的寿司,你会付出 \(mx^2+cx\) 的代价(\(m\in\{0,1\}\))。
最大化收益与代价的差。
题解:
一种经典的模型:最大权闭合子图。
模型:有若干个物品,每种物品有一个可正可负的价值 \(v_i\),选取了物品就意味着获得了价值。
物品之间有限制关系:\(x\to y\) 表示若要选择物品 \(x\) 则必须选择物品 \(y\)。
目标是最大化价值和。
显然,有时需要为了一个拥有较大价值的物品而被迫选择负价值的物品。
考虑使用最小割解决此类问题:
将每个物品与源 \(S\) 汇 \(T\) 相连。若割掉与 \(S\) 相连的边表示不选这个物品,割掉与 \(T\) 相连的边表示选择这个物品。
对于一个物品的价值 \(v\),如果 \(v>0\) 则令它与 \(S\) 相连的边的权值为 \(v\),与 \(T\) 相连的边的权值为 \(0\),将 \(v\) 加入答案。表示不选择这个物品会付出 \(v\) 的代价;
如果 \(v<0\) 则令它与 \(S\) 相连的边的权值为 \(0\),与 \(T\) 相连的边的权值为 \(-v\)(显然 \(-v>0\))。表示选择这个物品会付出 \(-v\) 的代价。
对于 \(x\to y\) 的关系,转化为 \(x\) 向 \(y\) 连一条权值为 \(\infty\) 的边,显然这条边永远不会被割,如果选择了 \(x\),即割掉 \(x\) 与 \(T\) 相连的边,那么如果不选 \(y\),即割掉 \(y\) 与 \(S\) 相连的边,就会出现路径 \(S\to x\to y\to T\),所以必须选择 \(y\)。而如果不选 \(x\) 则对 \(y\) 的选择没有影响。
因为权值全部为非负数,符合使用 Dinic 算法解决网络流的条件,结合最大流最小割定理,可以使用 Dinic 算法解决此类问题。
回到题目上来,我们将每种 \(d_{i,j}\) 的收益都看做一个物品。显然如果选择 \(d_{i,j}\)(\(i<j\)),则必须选择 \(d_{i,j-1}\) 以及 \(d_{i+1,j}\)。
而如果吃了 \(c\)(\(c>0\))种类型为 \(x\) 的寿司,需要付出 \(mx^2+cx\) 的代价。
这可以转化为:吃了每种类型为 \(x\) 的寿司需要付出 \(x\) 的代价,而吃过类型为 \(x\) 的寿司需要付出 \(mx^2\) 的代价。
选择了 \(d_{i,i}\) 就代表吃掉了第 \(i\) 种寿司,这时需要付出 \(a_i\) 的代价(\(a_i\) 是这种寿司的类型)。
选择了 \(d_{i,i}\) 还意味着:必须付出 \(m\cdot a_i^2\) 的代价,我们将每个寿司类型也看作一个物品,选择收益 \(d_{i,i}\) 则必须选择类型 \(a_i\)。
至此,所有限制都转化为了“选择 \(x\) 则必须选择 \(y\)”的形式,可以使用最大权闭合子图的模型解决了。
在代码中,\(S\)、\(T\) 分别是 \(1\) 和 \(2\) 号点,\(d_{i,j}\) 是 \(\mathrm{Id}[i][j]\) 号点,接下来的点则是每种寿司类型。
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const LL Inf = 0x7fffffffffffffff;
namespace DinicFlow {
const int MN = 6060, MM = 16055;
int N, S, T;
int h[MN], iter[MN], nxt[MM * 2], to[MM * 2], tot = 1; LL w[MM * 2];
inline void ins(int u, int v, LL x) { nxt[++tot] = h[u], to[tot] = v, w[tot] = x, h[u] = tot; }
inline void insw(int u, int v, LL x) { ins(u, v, x); ins(v, u, 0); }
int lv[MN], que[MN], l, r;
inline bool Lvl() {
memset(lv, 0, sizeof(lv));
lv[S] = 1;
que[l = r = 1] = S;
while (l <= r) {
int u = que[l++];
for (int i = h[u]; i; i = nxt[i]) if (w[i] && !lv[to[i]]) {
lv[to[i]] = lv[u] + 1;
que[++r] = to[i];
}
}
return lv[T] != 0;
}
LL Flow(int u, LL f) {
if (u == T) return f;
LL d = 0, s = 0;
for (int &i = iter[u]; i; i = nxt[i]) if (w[i] && lv[to[i]] == lv[u] + 1) {
d = Flow(to[i], std::min(f, w[i]));
f -= d, s += d;
w[i] -= d, w[i ^ 1] += d;
if (!f) break;
}
return s;
}
inline LL Dinic() {
LL Ans = 0;
while (Lvl()) {
memcpy(iter + 1, h + 1, N * sizeof(h[0]));
Ans += Flow(S, Inf);
}
return Ans;
}
}
const int MN = 105;
int N, M, A[MN], MxA;
int F[MN][MN], Id[MN][MN], cnt;
LL Ans = 0;
int main() {
scanf("%d%d", &N, &M);
for (int i = 1; i <= N; ++i) scanf("%d", &A[i]), MxA = std::max(MxA, A[i]);
DinicFlow::S = 1, DinicFlow::T = 2;
cnt = 2;
for (int i = 1; i <= N; ++i) for (int j = i; j <= N; ++j) {
scanf("%d", &F[i][j]), Id[i][j] = ++cnt;
}
for (int i = 1; i <= N; ++i) for (int j = i; j <= N; ++j) {
int cost = F[i][j];
if (i == j) {
if (M) DinicFlow::insw(Id[i][j], cnt + A[i], Inf);
cost -= A[i];
}
else {
DinicFlow::insw(Id[i][j], Id[i + 1][j], Inf);
DinicFlow::insw(Id[i][j], Id[i][j - 1], Inf);
}
if (cost > 0) DinicFlow::insw(1, Id[i][j], cost), Ans += cost;
if (cost < 0) DinicFlow::insw(Id[i][j], 2, -cost);
}
if (M) for (int i = 1; i <= MxA; ++i) DinicFlow::insw(++cnt, 2, i * i);
DinicFlow::N = cnt;
printf("%lld\n", Ans - DinicFlow::Dinic());
return 0;
}
洛谷 P3749: LOJ 2146: [SHOI2017]寿司餐厅的更多相关文章
- [LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅
[LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅 题意 比较复杂放LOJ题面好了qaq... Kiana 最近喜欢到一家非常美味的寿司餐厅用餐. 每天晚上,这家餐厅都会按顺序提供 ...
- 【最大权闭合子图】bzoj4873 [Shoi2017]寿司餐厅
4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 369 Solved: 256[Submit][Status ...
- BZOJ:4873: [Shoi2017]寿司餐厅
4873: [Shoi2017]寿司餐厅 首先很开心在膜你赛的时候做了出来. 看到数据范围,看到不能dp,看到贡献去重后计算,咦,流? 那就容易了,转最大权闭合子图,每个区间建一个点,取了就一定要取他 ...
- bzoj 4873: [Shoi2017]寿司餐厅 [最小割]
4873: [Shoi2017]寿司餐厅 题意:略 唯一会做的... 一眼最小割 就是最大权闭合子图呀 \(s\rightarrow d_{positive} \rightarrow -d_{negt ...
- BZOJ_4873_[Shoi2017]寿司餐厅_最大权闭合子图
BZOJ_4873_[Shoi2017]寿司餐厅_最大权闭合子图 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=4873 分析:我们发现分数正负 ...
- 【BZOJ4873】[Shoi2017]寿司餐厅 最大权闭合图
[BZOJ4873][Shoi2017]寿司餐厅 Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di ...
- bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)
4873: [Shoi2017]寿司餐厅 大难题啊啊!!! 题目:传送门 题解:一眼题是网络流,但还是不会OTZ,菜啊... %题解... 最大权闭合子图!!! 好的...开始花式建边: 1.对于每个 ...
- [bzoj4873] [洛谷P3749] [Shoi2017] 寿司餐厅
Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个 代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号.每种寿 ...
- 【洛谷P3749】[六省联考2017]寿司餐厅(网络流)
洛谷 题意: 给出\(n\)份寿司,现可以选取任意多次连续区间内的寿司,对于区间\([l,r]\),那么贡献为\(\sum_{i=l}^r \sum_{j=i}^rd_{i,j}\)(对于相同的\(d ...
随机推荐
- spring mvc自定义注解--访问时验证
作用:在访问controller的方法时,判断用户是否是登陆状态. step1:定义注解 import java.lang.annotation.ElementType; import java.la ...
- 11th 回忆整个学期——告学弟学妹
告诉后来的学弟学妹,不要因为艰难而却步,坚持下去才知道,山的对面是什么.很多东西或许一开始看起来是无用,甚至无意义的,但是努力去做,你才知道价值所在.不要等一切结束了,才懂得自己错过了什么.
- Linux命令(二十) 显示系统内存状态 free
一.命令简介 free 命令会显示内存的使用情况,包括实体内存,虚拟的交换文件内存.共享内存区段,以及系统核心使用的缓冲区等. 二.参数说明 -b 以Byte为单位显示内存使用情况 -K 以KB为单位 ...
- MyBatis中Mapper的返回值类型
insert.update.delete语句的返回值类型 对数据库执行修改操作时,数据库会返回受影响的行数. 在MyBatis(使用版本3.4.6,早期版本不支持)中insert.update.del ...
- php学习目录
前面的话 前端工程师为什么要学习php?是因为招聘要求吗?这只是一方面 一开始,我对学习php是抵触的,毕竟javascript已经够自己喝一壶的了,再去学习php,可能让自己喝醉.但是,在学习jav ...
- java工程师需要学什么
成为一名Java高级工程师你需要学什么 宏观上: 1.技术广度方面至少要精通多门开源技术吧,研究过struts\spring等的源码. 2.项目经验方面从头到尾跟过几个大项目,头是指需求阶段,包括需求 ...
- pgm2
MRF 笔记 我们先讨论引入 MRF 的必要性.经典的例子就是四个 r.v.s 连成一个正方形的结构的时候,我们没法通过 BN 获得给定对角线两个 r.v.s 而剩下的条件独立(不都是 d-sep), ...
- BZOJ4036 HAOI2015按位或(概率期望+容斥原理)
考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...
- 学习《Unix/Linux编程实践教程》(2):实现 more
0.目录 1.more 能做什么? 2.more 是如何实现的? 3.实现 more 3.1 more01.c 3.2 more02.c 3.3 more03.c 1.more 能做什么? more ...
- CF375D Tree and Queries
题意翻译 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. 感谢@elijahqi 提供的翻译 ...