课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)—— 0.学习目标
Understand the key computations underlying deep learning, use them to build and train deep neural networks, and apply it to computer vision.
学习目标
- See deep neural networks as successive blocks put one after each other
- Build and train a deep L-layer Neural Network
- Analyze matrix and vector dimensions to check neural network implementations.
- Understand how to use a cache to pass information from forward propagation to back propagation.
- Understand the role of hyperparameters in deep learning
【中文翻译】
了解深层学习的关键计算, 利用它们构建和训练深层神经网络, 并将其应用于计算机视觉。
课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)—— 0.学习目标的更多相关文章
- [C1W1] Neural Networks and Deep Learning - Introduction to Deep Learning
第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以 ...
- Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?
Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第四周:深层神经网络(Deep Neural Networks)-课程笔记
第四周:深层神经网络(Deep Neural Networks) 4.1 深层神经网络(Deep L-layer neural network) 有一些函数,只有非常深的神经网络能学会,而更浅的模型则 ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- 读《Deep Learning Tutorial》(台湾大学 李宏毅 深度学习教学ppt)后杂记
原ppt下载:pan.baidu.com/s/1nv54p9R,密码:3mty 需深入实践并理解的重要概念: Deep Learning: SoftMax Fuction(输出层归一化函数,与sigm ...
- 【RS】Wide & Deep Learning for Recommender Systems - 广泛和深度学习的推荐系统
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, ...
随机推荐
- illustrator画梯形
1.在空白文档上先绘制出一个长方形: 2.用鼠标点击工具箱中”自由变换“工具: 3.用鼠标指向长方形四个顶点中的任意一个,当鼠标的箭头变为相反反方向的双箭头时,再按住鼠标左键不要松手, 同时按住[sh ...
- 将批量指定的docker镜像打成文件
#/bin/bash tag= img1=hub.chinacloud.com.cn/onex.dev/one-task-scheduler:$tag img2=hub.chinacloud.co ...
- jquery删除onclick属性和设置onclick属性--获取验证码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- IntelliJ IDEA 2017版 spring-boot 2.0.3 部署war包项目和jar包项目
1.建立项目 Java Controller package com.springboot.jsp.controller; import org.springframework.stereotype. ...
- UVa 10828 Back to Kernighan-Ritchie (数学期望 + 高斯消元)
题意:给定一个 n 个结点的有向图,然后从 1 结点出发,从每个结点向每个后继结点的概率是相同的,当走到一个没有后继结点后,那么程序终止,然后问你经过每个结点的期望是次数是多少. 析:假设 i 结点的 ...
- ActiveMQ -5.9和jms-1.1源码下载
ActiveMQ-5.9和jms-1.1源码下载:见附件
- 延时、输入输出接口P0~P3
1.寄存器 为了知道延时程序是如何工作的,我们必需首先了解延时程序中出现的一些符号,就从R1开始,R1被称之为工作寄存器.什么是工作寄存器呢?让我们从现实生活中来找找答案.如果出一道数学题:123+5 ...
- 通过request获取网页资讯 通过BeautifulSoup剖析网页元素
import requests newsUrl ='http://news.sina.com.cn/china/' res = requests.get(newsUrl) res.encoding ...
- 深入探讨 Java 类加载器(转)
原帖地址:https://www.ibm.com/developerworks/cn/java/j-lo-classloader/ 类加载器是 Java 语言的一个创新,也是 Java 语言流行的重要 ...
- 12.Scrapy与mongodb交互和设置中间键
反反爬虫相关机制 Some websites implement certain measures to prevent bots from crawling them, with varying d ...