Description

N个点,M条边的有向图,求点1到点N的最短路(保证存在)。
1<=N<=1000000,1<=M<=10000000

Input

第一行两个整数N、M,表示点数和边数。
第二行六个整数T、rxa、rxc、rya、ryc、rp。

前T条边采用如下方式生成:
1.初始化x=y=z=0。
2.重复以下过程T次:
x=(x*rxa+rxc)%rp;
y=(y*rya+ryc)%rp;
a=min(x%n+1,y%n+1);
b=max(y%n+1,y%n+1);
则有一条从a到b的,长度为1e8-100*a的有向边。

后M-T条边采用读入方式:
接下来M-T行每行三个整数x,y,z,表示一条从x到y长度为z的有向边。

1<=x,y<=N,0<z,rxa,rxc,rya,ryc,rp<2^31

Output

一个整数,表示1~N的最短路。

Sample Input

3 3
0 1 2 3 5 7
1 2 1
1 3 3
2 3 1

Sample Output

2

HINT

【注释】

请采用高效的堆来优化Dijkstra算法。

Source

 

题解

这道题正解要用配对堆

但其实stl的普通堆也可以卡过,重点是卡过

自己不知道RE和TLE了多久


AC代码:

RE代码:

这样我还能说什么0.0

 #include<queue>
#include<cstdio>
#include<algorithm>
#define ll long long
#define zcr pair<int,int>
using namespace std;
int tot;
int next[],head[],son[],val[];
ll dis[];
bool vis[];
int read(){
int tmp=; char ch=getchar();
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='') tmp=tmp*+ch-'',ch=getchar();
return tmp;
}
void add(int x,int y,int z){
next[++tot]=head[x];
head[x]=tot;
son[tot]=y;
val[tot]=z;
}
priority_queue<zcr,vector<zcr>,greater<zcr> > q;
int main(){
int n,m;
n=read(),m=read();
int T,rxa,rxc,rya,ryc,rp;
T=read(),rxa=read(),rxc=read(),rya=read(),ryc=read(),rp=read();
int a,b,x,y;
for (int i=;i<=T;i++){
x=(x*rxa+rxc)%rp;
y=(y*rya+ryc)%rp;
a=min(x%n+,y%n+);
b=max(y%n+,y%n+);
add(a,b,-*a);
}
for (int i=;i<=m-T;i++){
int u=read(),v=read(),s=read();
add(u,v,s);
}
for (int i=;i<=n;i++) dis[i]=1ll<<;
dis[]=;
q.push(make_pair(,));
while (!q.empty()){
int x=q.top().second;
q.pop();
if (vis[x]) continue;
vis[x]=true;
for (int i=head[x];i;i=next[i]){
int v=son[i];
if (dis[v]>dis[x]+val[i]){
dis[v]=dis[x]+val[i];
q.push(make_pair(dis[v],v));
}
}
}
printf("%d\n",dis[n]);
return ;
}

BZOJ-3040-最短路(road)的更多相关文章

  1. BZOJ 3040: 最短路(road) ( 最短路 )

    本来想学一下配对堆的...结果学着学着就偏了... 之前 kpm 写过这道题 , 前面的边不理它都能 AC .. 我也懒得去写前面的加边了... 用 C++ pb_ds 库里的 pairing_hea ...

  2. BZOJ 3040: 最短路(road) [Dijkstra + pb_ds]

    3040: 最短路(road) Time Limit: 60 Sec  Memory Limit: 200 MBSubmit: 2476  Solved: 814[Submit][Status][Di ...

  3. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  4. BZOJ 3040最短路

    题目描述 给定一个 NN 个点, MM 条有向边的带权图,请你计算从 SS 出发,到每个点的距离. 数据保证你能从 SS 出发到任意点. 输入输出格式 输入格式: 第一行两个整数 NN . MM ,表 ...

  5. BZOJ 2750 HAOI 2012 Road 高速公路 最短路

    题意: 给出一个有向图,求每条边有多少次作为最短路上的边(任意的起始点). 范围:n <= 1500, m <= 5005 分析: 一个比较容易想到的思路:以每个点作为起点,做一次SPFA ...

  6. Bzoj 3694: 最短路 树链剖分

    3694: 最短路 Time Limit: 5 Sec  Memory Limit: 256 MBSubmit: 67  Solved: 34[Submit][Status][Discuss] Des ...

  7. BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )

    对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...

  8. BZOJ 2752: [HAOI2012]高速公路(road) [线段树 期望]

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit] ...

  9. 【刷题】BZOJ 2125 最短路

    Description 给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径. Input 输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个 ...

随机推荐

  1. 测试与发布(Alpha版本)

    [Alpha阶段]测试报告 1.测试找出的BUG (1).这种情况刷新就好 (2).文件必须10个才行,多余10个的部分不会进入查重的部分,少于会出错: (3).文件保存在d:\files,由于有些原 ...

  2. 201521123057 《Java程序设计》 第8周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容 2. 书面作业 1.List中指定元素的删除(题目4-1) 1.1 实验总结 答:remove中注意应该使用eq ...

  3. 201521123051 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 使用工具:百度脑图 1.2 使用常规方法总结其他上课内容.(多态) 多态的定义:父类的引用指向子类的对象. 父类的引用:一是指父类变 ...

  4. 201521123036 《Java程序设计》第2周学习总结

    本周学习总结 java数据类型: 基本类型:整数,浮点,boolean类 引用类型:数组,类,接口,null类型 String类:String类的对象不可变,字符串API,大量修改字符串使用Strin ...

  5. JAVA课设--五子棋--团队博客

    1 团队名称.团队成员介绍 徐璐琳 网络1511班 201521123010 祁泽文 网络1511班 201521123011 张晨晨 网络1511班 201521123009 2 项目git地址 团 ...

  6. 201521123119 《Java程序设计》第13周学习总结

    1. 本周学习总结 Q以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 书面作业 Q1. 网络基础 Q1.1 比较ping www.baidu.com与ping cec. ...

  7. webservice第二篇【自定义webservice服务、soa、uddi概念、soap协议】

    自定义webservice服务 我们在上一章节中已经使用wsimport生成本地代理来调用webservice的服务了,其实我们自己写的web应用程序也是可以发布webservice的 我们发布了we ...

  8. Apache Spark 2.2.0 中文文档 - Spark 编程指南 | ApacheCN

    Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functio ...

  9. php调用webservice接口

    项目中使用到了调用三方厂商webService接口.他的接口类似为http://haha.cn:86/BaseInfoService.svc?wsdl,在这里我注意到了"wsdl" ...

  10. ClassLoader类加载机制&&JVM内存管理

    一.ClassLoader类加载机制 在java中类加载是遵循委派双亲加载的:通过调用loadClass方法逐级往上传递委派加载请求,当找不到父ClassLoader时调用其findClass方法尝试 ...