a的b次方怎么求

pow(a, b)是数学头文件math.h里面有的函数

可是它返回值是double类型,数据有精度误差

那就自己写for循环咯

LL pow(LL a, LL b){//a的b次方
LL ret = ;
for(LL i = ; i <= b; i ++){
ret *= a;
}
return ret;
}

完美

可是题目是b的范围是1 <= b <= 1e9(#°Д°)

超时,妥妥的。。。

看个例子

比如计算

2*2*2*2*2*2*2*2*2*2*2

可以这样算

原式=4*4*4*4*4*2

=8*8*4*2

=16*4*2

你看,相同的可以先合并,减少计算步骤

如果题目说数据很大,还需要求余,那么代码就可以这么写

 LL pow_mod(LL a, LL b){//a的b次方
if(b == ) return ;
LL ret = pow_mod(a, b/);
ret = ret * ret % MOD;
if(b % == ) ret = ret * a % MOD;
return ret;
}

这是递归写法

然后还有递推写法

 LL pow_mod(LL a, LL b){//a的b次方
LL ret = ;
while(b != ){
if(b % == ){
ret = (ret * a) % MOD ;
}
a = (a * a ) % MOD ;
b /= ;
}
return ret;
}

对于位运算熟的小盆友,还可以写成位运算形式,速度又快,又好理解,在加一个求余p,代码如下

 LL pow_mod(LL a, LL b, LL p){//a的b次方求余p
LL ret = ;
while(b){
if(b & ) ret = (ret * a) % p;
a = (a * a) % p;
b >>= ;
}
return ret;
}

有了快速幂,于是,快速乘诞生了

 LL mul(LL a, LL b, LL p){//快速乘,计算a*b%p
LL ret = ;
while(b){
if(b & ) ret = (ret + a) % p;
a = (a + a) % p;
b >>= ;
}
return ret;
}

(*´Д`*)快速乘应该不怎么会用,无意义的东西,说不定哪天用的上

这些知识到底算不算数论呢???不管了(´∀`*)

ACM数论之旅2---快速幂,快速求a^b((ノ`Д´)ノ做人就要坚持不懈)的更多相关文章

  1. acm数论之旅(转载) -- 快速幂

    0和1都不是素数,也不是合数. a的b次方怎么求 pow(a, b)是数学头文件math.h里面有的函数 可是它返回值是double类型,数据有精度误差 那就自己写for循环咯 LL pow(LL a ...

  2. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  3. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  4. 刷题总结——分糖(ssoj 容斥原理+逆元+快速幂+组合数求插板)

    题目: 题目描述 有 N 个(相同的)糖果,M 个(不同的)小朋友.M 和 N 满足:1≤M≤N≤100000(105).要求:1.每个小朋友都至少有一个糖果.2.不存在正整数 X(X>=2), ...

  5. 取模性质,快速幂,快速乘,gcd和最小公倍数

    一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...

  6. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  7. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  8. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  9. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

随机推荐

  1. .net core中使用缓存(cache)

    官方文档:https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-2.2#use ...

  2. P3871 [TJOI2010]中位数

    傻逼题 维护两个系统堆即可 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; ...

  3. 扩展gcd算法

    扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x ...

  4. while、for循环控制之if、else

    if # score=99 # if score>90: # print('优秀') # elif score<60: # print('不及格') # else: # print('良好 ...

  5. Jsp中格式化时间戳的常用标签

    接下来一段时间的记录,虽然不是一些什么全新的知识,但是作为后台开发人员都是应该必须掌握的前端基础技能,说实话,每一个后台程序员的短板就在于前端技能的弱而造就了不能更上一层楼.从今天开始,我将彻底开启菜 ...

  6. [PLC]ST语言五:STL/RET/CMP/ZCP

    一:STL/RET/CMP/ZCP 说明:简单的顺控指令不做其他说明. 控制要求:无 编程梯形图: 结构化编程ST语言: (*步进指令STL(EN,s);*) SET(M8002,S3); STL(T ...

  7. ubuntu下安装pip install mysqlclient 报错 command "python setup.py egg_info" failed with error.....解决方案

    我的环境: ubuntu 1604 版本, 在黑屏终端已经安装了django和virtualenv虚拟环境, 在创建了django的models后开始迁移的操作, 出现错误, 错误代码最后如题目 可以 ...

  8. 2018Java年底总结

    一年又过去了,这是我的第二年的JAVA开发,总感觉有很多想说的,可惜语言组织能力着实一般,以下列举一些今年的总结. 1.首先告诫一下新入行或者新入职经验不多的小伙伴,写sql的时候根据业务能单表就单表 ...

  9. Arthas Alibaba 开源 Java 诊断工具

    Arthas 用户文档 English Docs Arthas(阿尔萨斯) 能为你做什么? Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱. 当你遇到以下类似问题而束手无策时,A ...

  10. gitlab+jenkins持续集成(二)

    1.jenkins服务器上的配置 -bin.tar.gz -C /opt/ yum install -y git /conf/settings.xml #只需更改maven的地址 <?xml v ...