a的b次方怎么求

pow(a, b)是数学头文件math.h里面有的函数

可是它返回值是double类型,数据有精度误差

那就自己写for循环咯

LL pow(LL a, LL b){//a的b次方
LL ret = ;
for(LL i = ; i <= b; i ++){
ret *= a;
}
return ret;
}

完美

可是题目是b的范围是1 <= b <= 1e9(#°Д°)

超时,妥妥的。。。

看个例子

比如计算

2*2*2*2*2*2*2*2*2*2*2

可以这样算

原式=4*4*4*4*4*2

=8*8*4*2

=16*4*2

你看,相同的可以先合并,减少计算步骤

如果题目说数据很大,还需要求余,那么代码就可以这么写

 LL pow_mod(LL a, LL b){//a的b次方
if(b == ) return ;
LL ret = pow_mod(a, b/);
ret = ret * ret % MOD;
if(b % == ) ret = ret * a % MOD;
return ret;
}

这是递归写法

然后还有递推写法

 LL pow_mod(LL a, LL b){//a的b次方
LL ret = ;
while(b != ){
if(b % == ){
ret = (ret * a) % MOD ;
}
a = (a * a ) % MOD ;
b /= ;
}
return ret;
}

对于位运算熟的小盆友,还可以写成位运算形式,速度又快,又好理解,在加一个求余p,代码如下

 LL pow_mod(LL a, LL b, LL p){//a的b次方求余p
LL ret = ;
while(b){
if(b & ) ret = (ret * a) % p;
a = (a * a) % p;
b >>= ;
}
return ret;
}

有了快速幂,于是,快速乘诞生了

 LL mul(LL a, LL b, LL p){//快速乘,计算a*b%p
LL ret = ;
while(b){
if(b & ) ret = (ret + a) % p;
a = (a + a) % p;
b >>= ;
}
return ret;
}

(*´Д`*)快速乘应该不怎么会用,无意义的东西,说不定哪天用的上

这些知识到底算不算数论呢???不管了(´∀`*)

ACM数论之旅2---快速幂,快速求a^b((ノ`Д´)ノ做人就要坚持不懈)的更多相关文章

  1. acm数论之旅(转载) -- 快速幂

    0和1都不是素数,也不是合数. a的b次方怎么求 pow(a, b)是数学头文件math.h里面有的函数 可是它返回值是double类型,数据有精度误差 那就自己写for循环咯 LL pow(LL a ...

  2. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  3. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  4. 刷题总结——分糖(ssoj 容斥原理+逆元+快速幂+组合数求插板)

    题目: 题目描述 有 N 个(相同的)糖果,M 个(不同的)小朋友.M 和 N 满足:1≤M≤N≤100000(105).要求:1.每个小朋友都至少有一个糖果.2.不存在正整数 X(X>=2), ...

  5. 取模性质,快速幂,快速乘,gcd和最小公倍数

    一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...

  6. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  7. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  8. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  9. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

随机推荐

  1. 【BZOJ1047】[HAOI2007]理想的正方形

    [BZOJ1047][HAOI2007]理想的正方形 题面 bzoj 洛谷 题解 二维\(st\)表,代码是以前的 #include<iostream> #include<cstdi ...

  2. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  3. 3504: [Cqoi2014]危桥

    3504: [Cqoi2014]危桥 链接 分析: 首先往返的可以转化为全是“往”,那么只要将容量除以2即可. 然后S向a1连边容量为an(除以2之前为2*an),S向a2连边容量为an,b1,b2向 ...

  4. Ubuntu环境下安装CUDA9.0

    前言: 本篇文章是基于安装CUDA 9.0的经验写,CUDA9.0目前支持Ubuntu16.04和Ubuntu17.04两个版本,如下图所示(最下面的安装方式我们选择第一个,即runfile方式): ...

  5. 【Maven】在pom.xml文件中使用resources插件的小作用

    在spring boot创建web项目打包为jar包的过程中,是不会把webapp目录下的页面也打包进去的,这个时候接触到了maven的 resources插件. ================== ...

  6. 初窥Linux之我最常用的20条命令

    1.cd命令   这是一个非常基本,也是大家经常需要使用的命令,它用于切换当前目录,它的参数是要切换到的目录的路径,可以是绝对路径,也可以是相对路径.如: cd /root/Docements # 切 ...

  7. SpringBoot日记——Web开发篇

    准备开始实战啦!~~~~ 我们先来看,SpringBoot的web是如何做web开发的呢?通常的步骤如下: 1.创建springboot应用,指定模块: 2.配置部分参数配置: 3.编写业务代码: 为 ...

  8. loadrunner使用过程中的问题记录

    一.录制时选错应用类型,导致提示“loadrunner sockets proxy auto-starter mercury interactive corp.(2002)” 解决办法:重新选择正确的 ...

  9. javaweb学习2——HTTP协议

    声明:本文只是自学过程中,记录自己不会的知识点的摘要,如果想详细学习JavaWeb,请到孤傲苍狼博客学习,JavaWeb学习点此跳转 本文链接:https://www.cnblogs.com/xdp- ...

  10. fiddler和bugfree之间的联动(做伪请求、伪响应、并发、抓密码)

    青.取之于蓝,而青于蓝:冰.水为之,而寒于水 不积跬步,无以至千里;不积小流,无以成江海. 1解压Fiddler Web Debugger V4.6.2017修正中文第6版至C盘Program Fil ...