对于每个区间[l,r],显然右端点r是必须放置守卫的。考虑其不能监视到的点,构成一段段区间。一个非常显然但我就是想不到的性质是,对于这样的某个区间[x,y],在(y+1,r)内的点都是不能监视到这个区间内的任何一点的,证明考虑一下斜率之间的关系即可。于是该区间的最右一个守卫可以放置在y,也可以放置在y+1,这样可以得到一个显然的区间dp,暴力dp是O(n3)的,固定右端点后移动左端点同时记录答案就可以优化到O(n2)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 5010
#define inf 1000000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],f[N][N],tot;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5324.in","r",stdin);
freopen("bzoj5324.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
memset(f,,sizeof(f));
for (int i=;i<=n;i++)
{
double k=inf;
int ans=;f[i][i]=;tot^=;
for (int j=i-;j;j--)
if ((double)(a[i]-a[j])/(i-j)<k) f[j][i]=ans,tot^=ans,k=(double)(a[i]-a[j])/(i-j);
else
{
int x=j;
while (x>&&(double)(a[i]-a[x-])/(i-x+)>=k) x--;
for (int k=j;k>=x;k--) tot^=f[k][i]=ans+min(f[k][j],f[k][j+]);
ans+=min(f[x][j],f[x][j+]);j=x;
}
}
cout<<tot;
return ;
}

BZOJ5324 JXOI2018守卫(区间dp)的更多相关文章

  1. JXOI2018守卫 区间DP

    链接 https://loj.ac/problem/2545 思路 f[i][j]表示i到j区间的最小监视人数 可以预处理出来g[i][j],表示i能否监视到j (其实预处理的关系不大,完全可以直接判 ...

  2. BZOJ5324 JXOI2018 守卫

    传送门 这是我见过的为数不多的良心九怜题之一 题目大意 给定一段$n$个点构成的折线,第$i$个折点的坐标是$(i,h_i)$,你可以在$i$点放置一个视野,定义$i$能看到$j$当且仅当$i$处有视 ...

  3. 【BZOJ5324】[JXOI2018]守卫(动态规划)

    [BZOJ5324][JXOI2018]守卫(动态规划) 题面 BZOJ 洛谷 题解 既然只能看到横坐标在左侧的点,那么对于任意一个区间\([l,r]\)而言,\(r\)必须被选. 假设\(r\)看不 ...

  4. BZOJ5324 & 洛谷4563 & LOJ2545:[JXOI2018]守卫——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5324 https://www.luogu.org/problemnew/show/P4563 ht ...

  5. [JXOI2018]守卫

    嘟嘟嘟 正如某题解所说,这题很有误导性:我就一直在想凸包. 随便一个数据,就能把凸包hack掉: 这样我们的点G就gg了. 所以正解是什么呢?dp. 题解看这位老哥的吧,我感觉挺好懂的:题解 P456 ...

  6. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  7. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  8. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  9. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

随机推荐

  1. svn树冲突的解决方法

    树冲突 就是开发人员移动.重命名.删除一个文件或文件夹,而另一名开发人员也对它们进行了移动.重命名.删除或者仅仅是修改时就会发生树冲突.有很多种不同的情形可以导致树冲突,而且不同的情形需要不同的步骤来 ...

  2. 维诺图(Voronoi Diagram)分析与实现(转)

    一.问题描述1.Voronoi图的定义又叫泰森多边形或Dirichlet图,它是由一组由连接两邻点直线的垂直平分线组成的连续多边形组成. 2.Voronoi图的特点(1)每个V多边形内有一个生成元: ...

  3. NO17--vue父子组件间单向数据流的解决办法

    在上一篇中讲解了父子组件之间是如何传值的,如果子组件需要改变传过来的数据供自己使用,或者想在子组件中改变传过来的数据并同步到父组件,那么直接改肯定是不行的,如果你这么做了,Vue 会在控制台给出警告. ...

  4. centos 开机自启设定:

    在sentos系统下,主要有两种方法设置自己安装的程序开机启动.1.把启动程序的命令添加到/etc/rc.d/rc.local文件中,比如下面的是设置开机启动httpd. #!/bin/sh # # ...

  5. runlevel 命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/PecoVio/article/details/82428883 runlevel 知识扩展 linux操作系统自从开始启动 ...

  6. easyui panel异步获取后台数据在前台显示

    我在使用easyui的时候,想做一个向下图所示的效果,这个panel的样式已经做好了,想从后台异步获取json数据,然后填入到文本框中,不知道哪位大神能给点指导?万分感谢! 放入表单中,使用form对 ...

  7. (第七周)评论alpha发布

    本人所在组:奋斗吧兄弟 按课上展示组的顺序对其他组进行点评: 1.  新蜂 项目:游戏俄罗斯方块 界面完善,已经实现了游戏的基本功能.可以对图形进行变换形状,进行位置移动,可以加快下落的速度,并对一整 ...

  8. 在写ssh项目时浏览器页面出现http status 404 – not found

    HTTP Status 404 - /streetManager/index.jsp type Status report message /streetManager/index.jsp descr ...

  9. No.1011_第八次团队会议

    罗老师和Bigman助教: 一直以来没看博客页面,我们的博客负责人不是没写博客,而是不小心把博客发到草稿上了.. 请您再次看一下我们的博客,并批评指正! 今天大家的情绪依旧很低落,离第一轮迭代完成距离 ...

  10. Daily Scrumming* 2015.10.30(Day 11)

    一.总体情况总结 今日项目总结: 1.前后端同一了API设计以及API权限认证.用户状态保存的开发方案 2.API以及后端模型已经开始开发,前端UEditor开始学习,本周任务有良好的起步 3.前后端 ...