P1494 [国家集训队]小Z的袜子

题目描述

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……

具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。

你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

然而数据中有L=R的情况,请特判这种情况,输出0/1。

输入输出格式

输入格式:

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

输出格式:

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

输入输出样例

输入样例#1: 复制

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
输出样例#1: 复制

2/5
0/1
1/1
4/15

说明

30%的数据中 N,M ≤ 5000;

60%的数据中 N,M ≤ 25000;

100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。


Solution

今天认认真真理解了一下莫队(不带修!!),发现还是挺简单的??(也许是做的题太简单了.....)

核心要点是离线处理。通过分块排序调整时间复杂度降到$O(n\sqrt{n})$级别,在排序后的左右端点来回跳就好了。

在某些情况下像分块一样要预处理出一些东西(这道题还不需要)

最后再排回来序就好了。

然后这道题主要还是观察怎么更新答案比较重要......

对于$L,R$的询问。

设其中颜色为$x,y,z$的袜子的个数为$a,b,c$...

那么答案即为$(a*(a-1)/2+b*(b-1)/2+c*(c-1)/2....)/((R-L+1)*(R-L)/2)$

      $(C_a^2+C_b^2+C_c^2+....)/(C_{a+b+c+...}^2)$(选袜子的组合)

化简得:$(a^2+b^2+c^2+...x^2-(a+b+c+d+.....))/((R-L+1)*(R-L))$

即:$(a^2+b^2+c^2+...x^2-(R-L+1))/((R-L+1)*(R-L))$

所以只用每次更新时更新每种颜色数量的平方和就行了。

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std; int n, m; int blo[], tot;
struct Node {
int l, r, id;
LL ans1, ans2;
} qus[];
bool cmp(Node a, Node b) { if(blo[a.l] == blo[b.l]) return a.r < b.r; return a.l < b.l; }
bool cmp2(Node a, Node b) { return a.id < b.id; } LL ans;
int cnt[];
void update(int x, int d) {
ans -= cnt[x] * cnt[x];
cnt[x] += d;
ans += cnt[x] * cnt[x];
} LL gcd(LL a, LL b) {
return b == ? a : gcd(b, a % b);
} int a[], ll[], rr[];
LL Ans[];
int main() {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i ++) scanf("%d", &a[i]);
for(int i = ; i <= m; i ++) {
scanf("%d%d", &ll[i], &rr[i]);
qus[i].l = ll[i], qus[i].r = rr[i];
qus[i].id = i;
}
tot = sqrt(n);
for(int i = ; i <= n; i ++) blo[i] = i / tot + ;
sort(qus + , qus + + m, cmp);
int L = qus[].l, R = qus[].r;
for(int i = L; i <= R; i ++)
update(a[i], );
qus[].ans1 = ans - (qus[].r - qus[].l + );
qus[].ans2 = 1ll * (qus[].r - qus[].l) * (qus[].r - qus[].l + );
if(qus[].l == qus[].r) qus[].ans1 = , qus[].ans2 = ;
for(int i = ; i <= m; i ++) {
if(qus[i].l == qus[i].r) {
qus[i].ans1 = , qus[i].ans2 = ; continue;
}
while(qus[i].l < L) {
L --;
update(a[L], );
}
while(qus[i].l > L) {
update(a[L], -);
L ++;
}
while(qus[i].r < R) {
update(a[R], -);
R --;
}
while(qus[i].r > R) {
R ++;
update(a[R], );
}
qus[i].ans1 = ans - (qus[i].r - qus[i].l + );
qus[i].ans2 = 1ll * (qus[i].r - qus[i].l) * (qus[i].r - qus[i].l + );
}
sort(qus + , qus + + m, cmp2);
for(int i = ; i <= m; i ++) {
LL ans1 = qus[i].ans1, ans2 = qus[i].ans2;
if(ans1 == ) ans2 = ;
else {
LL d = gcd(ans1, ans2);
ans1 /= d;
ans2 /= d;
}
printf("%lld/%lld\n", ans1, ans2);
}
return ;
}

【洛谷】1494:[国家集训队]小Z的袜子【莫队】的更多相关文章

  1. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  2. P1494 [国家集训队]小Z的袜子/莫队学习笔记(误

    P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小\(Z\)每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小\(Z\)再也无法忍受这恼人的找袜子过程,于是他 ...

  3. 洛谷 P1494 [国家集训队] 小Z的袜子

    题目概述: 小Z把N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务 ...

  4. BZOJ2038 [2009国家集训队]小Z的袜子 莫队+分块

    作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...

  5. 洛谷P1494 [国家集训队]小Z的袜子

    Code: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring& ...

  6. 洛谷 P1494 [国家集训队]小Z的袜子(莫队)

    题目链接:https://www.luogu.com.cn/problem/P1494 一道很经典的莫队模板题,然而每道莫队题的大体轮廓都差不多. 首先莫队是一种基于分块的算法,它的显著特点就是: 能 ...

  7. [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法

    今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...

  8. BZOJ2120/洛谷P1903 [国家集训队] 数颜色 [带修改莫队]

    BZOJ传送门:洛谷传送门 数颜色 题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子

    二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...

随机推荐

  1. tomcat发布html静态页面

    一.环境 在Linux系统安装JDK并配置环境变量,安装tomcat(在tomcat官网下载压缩包即可,我使用的是tomcat7 https://tomcat.apache.org/download- ...

  2. CentOS配置163yum源

    1.下载repo文件 wget http://mirrors.163.com/.help/CentOS6-Base-163.repo 2.备份并替换系统的repo文件 [root@localhost ...

  3. 源码安装postgresql数据库

    一般情况下,postgresql由非root用户启动. 1.创建postgres用户 groupadd postgres useradd -g postgres postgres 下面的操作都在pos ...

  4. 19 Error handling and Go go语言错误处理

    Error handling and Go go语言错误处理 12 July 2011 Introduction If you have written any Go code you have pr ...

  5. python基础--hashlib模块

    hashlib模块用于加密操作,代替了md5和sha模块, 主要提供SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法. # -*- coding:utf-8 - ...

  6. Nginx - Header详解

    1. 前言 通过 HttpHeadersModule 模块可以设置HTTP头,但是不能重写已经存在的头,比如可能相对server头进行重写,可以添加其他的头,例如:Cache-Control,设置生存 ...

  7. vue系列之项目优化

    webpack中的Code Splitting Code Splitting是什么以及为什么 在以前,为了减少HTTP请求,通常地,我们会把所有的代码都打包成一个单独的JS文件,但是,如果这个文件体积 ...

  8. java基础56 HTML5的标签知识(网页知识)

    本文知识点(目录): 1.html常用标签    2.html实体标签    3.html媒体标签    4.html超链接标签    5.html图片标签    6.html标个标签 7.html框 ...

  9. 洛谷P1841重要的城市

    传送门啦 重要城市有三个性质如下: 1.重要城市能对其他两个不同城市的最短路径做出贡献 2.重要城市具有唯一性,如果两不同城市之间的最短路径有两种中间城市情况,那么这两个中间城市可以彼此代替,就都不能 ...

  10. gcc/g++ 命令

    gcc & g++现在是gnu中最主要和最流行的c & c++编译器 .g++是c++的命令,以.cpp为主,对于c语言后缀名一般为.c.这时候命令换做gcc即可.其实是无关紧要的.其 ...