过滤器(Filter)

  基础API中的查询操作在面对大量数据的时候是非常苍白的,这里Hbase提供了高级的查询方法:Filter。Filter可以根据簇、列、版本等更多的条件来对数据进行过滤,基于Hbase本身提供的三维有序(主键有序、列有序、版本有序),这些Filter可以高效的完成查询过滤的任务。带有Filter条件的RPC查询请求会把Filter分发到各个RegionServer,是一个服务器端(Server-side)的过滤器,这样也可以降低网络传输的压力。

  要完成一个过滤的操作,至少需要两个参数。一个是抽象的操作符,Hbase提供了枚举类型的变量来表示这些抽象的操作符:LESS/LESS_OR_EQUAL/EQUAL/NOT_EUQAL等;另外一个就是具体的比较器(Comparator),代表具体的比较逻辑,如果可以提高字节级的比较、字符串级的比较等。有了这两个参数,我们就可以清晰的定义筛选的条件,过滤数据。

抽象操作符(比较运算符)

LESS <

LESS_OR_EQUAL <=

EQUAL =

NOT_EQUAL <>

GREATER_OR_EQUAL >=

GREATER >

NO_OP 排除所有

比较器(指定比较机制)

BinaryComparator 按字节索引顺序比较指定字节数组,采用 Bytes.compareTo(byte[])

BinaryPrefixComparator 跟前面相同,只是比较左端的数据是否相同

NullComparator 判断给定的是否为空

BitComparator 按位比较

RegexStringComparator 提供一个正则的比较器,仅支持 EQUAL 和非 EQUAL

SubstringComparator 判断提供的子串是否出现在 value 中

HBase过滤器的分类

比较过滤器

1、行键过滤器 RowFilter

Filter rowFilter = new RowFilter(CompareOp.GREATER, new BinaryComparator("95007".getBytes()));
scan.setFilter(rowFilter);
 public class HbaseFilterTest {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter rowFilter = new RowFilter(CompareOp.GREATER, new BinaryComparator("95007".getBytes()));
scan.setFilter(rowFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} }

运行结果部分截图

2、列簇过滤器 FamilyFilter

Filter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryComparator("info".getBytes()));
scan.setFilter(familyFilter);
 public class HbaseFilterTest {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryComparator("info".getBytes()));
scan.setFilter(familyFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} } }

3、列过滤器 QualifierFilter

Filter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryComparator("name".getBytes()));
scan.setFilter(qualifierFilter);
 public class HbaseFilterTest {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryComparator("name".getBytes()));
scan.setFilter(qualifierFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} } }

4、值过滤器 ValueFilter

Filter valueFilter = new ValueFilter(CompareOp.EQUAL, new SubstringComparator("男"));
scan.setFilter(valueFilter);
 public class HbaseFilterTest {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter valueFilter = new ValueFilter(CompareOp.EQUAL, new SubstringComparator("男"));
scan.setFilter(valueFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} } }

5、时间戳过滤器 TimestampsFilter

List<Long> list = new ArrayList<>();
list.add(1522469029503l);
TimestampsFilter timestampsFilter = new TimestampsFilter(list);
scan.setFilter(timestampsFilter);
 public class HbaseFilterTest {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); List<Long> list = new ArrayList<>();
list.add(1522469029503l);
TimestampsFilter timestampsFilter = new TimestampsFilter(list);
scan.setFilter(timestampsFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }

专用过滤器

1、单列值过滤器 SingleColumnValueFilter ----会返回满足条件的整行

SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"info".getBytes(), //列簇
"name".getBytes(), //列
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
//如果不设置为 true,则那些不包含指定 column 的行也会返回
singleColumnValueFilter.setFilterIfMissing(true);
scan.setFilter(singleColumnValueFilter);
 public class HbaseFilterTest2 {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"info".getBytes(),
"name".getBytes(),
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
singleColumnValueFilter.setFilterIfMissing(true); scan.setFilter(singleColumnValueFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }

2、单列值排除器 SingleColumnValueExcludeFilter

SingleColumnValueExcludeFilter singleColumnValueExcludeFilter = new SingleColumnValueExcludeFilter(
"info".getBytes(),
"name".getBytes(),
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
singleColumnValueExcludeFilter.setFilterIfMissing(true); scan.setFilter(singleColumnValueExcludeFilter);
 public class HbaseFilterTest2 {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); SingleColumnValueExcludeFilter singleColumnValueExcludeFilter = new SingleColumnValueExcludeFilter(
"info".getBytes(),
"name".getBytes(),
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
singleColumnValueExcludeFilter.setFilterIfMissing(true); scan.setFilter(singleColumnValueExcludeFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }

3、前缀过滤器 PrefixFilter----针对行键

PrefixFilter prefixFilter = new PrefixFilter("9501".getBytes());

scan.setFilter(prefixFilter);
 public class HbaseFilterTest2 {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); PrefixFilter prefixFilter = new PrefixFilter("9501".getBytes()); scan.setFilter(prefixFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }

4、列前缀过滤器 ColumnPrefixFilter

ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter("name".getBytes());

scan.setFilter(columnPrefixFilter);
 public class HbaseFilterTest2 {

     private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter("name".getBytes()); scan.setFilter(columnPrefixFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }

5、分页过滤器 PageFilter

HBase学习之路 (六)过滤器的更多相关文章

  1. Hbase学习(三)过滤器 java API

    Hbase学习(三)过滤器 HBase 的基本 API,包括增.删.改.查等. 增.删都是相对简单的操作,与传统的 RDBMS 相比,这里的查询操作略显苍白,只能根据特性的行键进行查询(Get)或者根 ...

  2. HBase 学习之路(七)——HBase过滤器详解

    一.HBase过滤器简介 Hbase提供了种类丰富的过滤器(filter)来提高数据处理的效率,用户可以通过内置或自定义的过滤器来对数据进行过滤,所有的过滤器都在服务端生效,即谓词下推(predica ...

  3. HBase学习之路 (十一)HBase的协过滤器

    协处理器—Coprocessor 1. 起源 Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hba ...

  4. HBase 学习之路(六)——HBase Java API 的基本使用

    一.简述 截至到目前(2019.04),HBase 有两个主要的版本,分别是1.x 和 2.x ,两个版本的Java API有所不同,1.x 中某些方法在2.x中被标识为@deprecated过时.所 ...

  5. HBase学习之路 (七)HBase 原理

    系统架构 错误图解 这张图是有一个错误点:应该是每一个 RegionServer 就只有一个 HLog,而不是一个 Region 有一个 HLog. 正确图解 从HBase的架构图上可以看出,HBas ...

  6. HBase 学习之路(十)—— HBase的SQL中间层 Phoenix

    一.Phoenix简介 Phoenix是HBase的开源SQL中间层,它允许你使用标准JDBC的方式来操作HBase上的数据.在Phoenix之前,如果你要访问HBase,只能调用它的Java API ...

  7. HBase 学习之路(八)——HBase协处理器

    一.简述 在使用HBase时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求.在这种情况下,协处理器( ...

  8. HBase 学习之路(一)—— HBase简介

    一.Hadoop的局限 HBase是一个构建在Hadoop文件系统之上的面向列的数据库管理系统. 要想明白为什么产生HBase,就需要先了解一下Hadoop存在的限制?Hadoop可以通过HDFS来存 ...

  9. zigbee学习之路(六):Time3(查询方式)

    一.前言 通过上次的学习,相信大家对cc2530单片机的定时器的使用有了一定的了解,今天我们来介绍定时器3的使用,为什么介绍定时器3呢,因为它和定时器4功能是差不多的,所以学会定时器3,就基本掌握了c ...

随机推荐

  1. Storm框架:如何根据业务条件选择不同的bolt进行下发消息

    Strom框架基本概念就不提了,这里主要讲的是Stream自定义ID的消息流.默认spout.bolt都需实现接口方法declareOutputFields,代码如下: @Override publi ...

  2. Spring系列之——spring security

    1 搭建springboot 2 配置pom依赖(springboot版本为2.1.3) <dependency> <groupId>org.springframework.b ...

  3. Spring Boot 表单验证、AOP统一处理请求日志、单元测试

    一.使用@Valid表单验证 于实体类中添加@Min等注解 @Entity public class Girl { @Id @GeneratedValue private Integer id; pr ...

  4. html-图像标签

    图像标签 <img src="图片的路径"/> -src:图片的路径 -width:图片的宽度 -height:图片的高度 -alt:图片上显示的文字,把鼠标移动到图片 ...

  5. php Closure::bind的用法(转)

    官方文档:Closure 类 原文:php中怎么理解Closure的bind和bindTo bind是bindTo的静态版本,因此只说bind吧.(还不是太了解为什么要弄出两个版本) 官方文档: 复制 ...

  6. needPrint 不显示打印按钮

     客户问题:       客户用的是needPrint 来显示打印按钮,现在访问不能显示后台提示有错误 打开控制台显示: java.security.AccessControlException: ...

  7. 64位win10系统中无法开启vmware的VT-X嵌套虚拟化功能的解决方法

    在升级了win10操作系统之后,发现Vmware Workstation在安装64位操作系统虚拟机的或者要使用Intel VT-X/EPT的时候,会一直弹出vt-x被禁用的提示,如下图:       ...

  8. 基于 Docker 的现代软件供应链

    [编者按]本文作者为 Marc Holmes,主要介绍一项关于现代软件供应链的调查结果.本文系国内 ITOM 管理平台 OneAPM 编译呈现,以下为正文. 3 月初,为了了解软件供应链的现状以及 D ...

  9. numpy meshgrid 和 mgrid 的两个简单实例和解析

    numpy.meshgrid 和 numpy.mgrid 用于返回包含坐标向量的坐标矩阵. 当坐标矩阵为二维时, 可用于在图像变形时构建网格. 实例一 from __future__ import p ...

  10. oracle 闪回功能详解

    Oracle的闪回技术提供了一组功能,可以访问过去某一时间的数据并从人为错误中恢复.闪回技术是Oracle 数据库独有的,支持任何级别的恢复,包括行.事务.表和数据库范围.使用闪回特性,您可以查询以前 ...