【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

题面

LOJ

题解

这题好神仙啊。

直接考虑概率很麻烦,因为分母总是在变化。

但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标记(猎人印记???)

如果在一次选择的时候选中了一个已经被打过标记的人,那么我们就重新做一次选择。

这样显然没有任何影响。

现在考虑如何求第一个人最后一个被打上标记的概率。

我们容斥一下,枚举一下哪些人会在\(1\)之后被选择,那么容斥系数就是\((-1)\)的人数次方。

那么对于钦定的在\(1\)之后被选择的集合\(S\),假设他们的\(w\)的和为\(S\),所有人\(w\)的和为\(A\)。这个集合贡献的值就是\((-1)^{|S|}\sum_{i=1}^{\infty}(1-\frac{S+W_1}{A})^i\frac{W_1}{A}\)。后面的部分可以化简,结果就是\(\frac{W_1}{S+W_1}\)。

现在的问题就是求\(S\)了。

我们发现因为是一个分数的形式,如果直接计算显然是不能够直接\(dp\)。

换种思路,如果我们计算每一种分母分别出现了多少次,这个就非常好算了。

这样就可以通过\(dp\)计算,同时发现事实上这个\(dp\)就是一个\(01\)背包,所以可以用分治+\(NTT\)来优化计算。

时间复杂度\(O(nlogn^2)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 250000
#define ll long long
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int n,w[MAX],ans;
int W[MAX],r[MAX];
void NTT(int *P,int len,int opt)
{
int N,l=0;for(N=1;N<len;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int w=fpow(3,(MOD-1)/(i<<1));W[0]=1;
for(int k=1;k<i;++k)W[k]=1ll*W[k-1]*w%MOD;
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
int X=P[j+k],Y=1ll*P[i+j+k]*W[k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=(X+MOD-Y)%MOD;
}
}
if(opt==-1)
{
reverse(&P[1],&P[N]);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)P[i]=1ll*P[i]*inv%MOD;
}
}
int tmp[50][MAX];
int S[MAX],top,P[MAX];
int Solve(int l,int r,int *P)
{
if(l==r){P[0]=1;P[w[l]]=MOD-1;return w[l];}
int mid=(l+r)>>1,l1,l2,ls,rs,N;
ls=S[top--];l1=Solve(l,mid,tmp[ls]);
rs=S[top--];l2=Solve(mid+1,r,tmp[rs]);
for(N=1;N<=l1+l2;N<<=1);
NTT(tmp[ls],N,1);NTT(tmp[rs],N,1);
for(int i=0;i<N;++i)P[i]=1ll*tmp[ls][i]*tmp[rs][i]%MOD;
NTT(P,N,-1);S[++top]=ls;S[++top]=rs;
for(int i=0;i<N;++i)tmp[ls][i]=tmp[rs][i]=0;
return l1+l2;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)w[i]=read();
for(int i=0;i<50;++i)S[++top]=i;
int len=Solve(2,n,P);
for(int i=0;i<=len;++i)ans=(ans+1ll*P[i]*fpow(w[1]+i,MOD-2))%MOD;
ans=1ll*ans*w[1]%MOD;
printf("%d\n",ans);
return 0;
}

【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)的更多相关文章

  1. [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)

    https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...

  2. LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治

    传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...

  3. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  4. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  5. [LOJ2541] [PKUWC2018] 猎人杀

    题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...

  6. 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)

    点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...

  7. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  8. UOJ#449. 【集训队作业2018】喂鸽子 min-max容斥,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html 题解 设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下. ...

  9. [PKUWC2018]猎人杀

    题解 感觉是一道神题,想不出来 问最后\(1\)号猎人存活的概率 发现根本没法记录状态 每次转移的分母也都不一样 可以考虑这样一件事情: 如果一个人被打中了 那么不急于从所有人中将ta删除,而是给ta ...

  10. 题解-PKUWC2018 猎人杀

    Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...

随机推荐

  1. JUC——阻塞队列

    Queue是一个队列,而队列的主要特征是FIFO先进先出,要实现生产者与消费者模型,也可以采用队列来进行中间的缓冲读取,好处是:生产者可以一直不停歇的生产数据. BlockingQueue是Queue ...

  2. [leetcode]从中序与后序/前序遍历序列构造二叉树

    从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 po ...

  3. 使用C#采集Shibor数据到Excel

    对Shibor的变化一直以来比较关注,正好最近学习了对html数据处理的一些知识,就打算拿来采集一些我需要的Shibor数据. 使用到的库 HttpAgilityPack 一个非常不错的html解析工 ...

  4. Netty源码分析第4章(pipeline)---->第7节: 前章节内容回顾

    Netty源码分析第四章: pipeline 第七节: 前章节内容回顾 我们在第一章和第三章中, 遗留了很多有关事件传输的相关逻辑, 这里带大家一一回顾 首先看两个问题: 1.在客户端接入的时候, N ...

  5. 07-matplotlib-箱线图

    import numpy as np import matplotlib.pyplot as plt ''' 箱形图(Box-plot)又称为盒须图,盒式图,或 箱线图: 是一种用在显示一组数据分散情 ...

  6. Tomcat ngxin 反向代理

    tomcat nginx 反向代理 安装nginx yum直接安装 yum install nginx –y 也可以编译安装 这是用编译安装,新手可以用yum安装 配置文件在 /etc/nginx/c ...

  7. Spring Cloud限流思路及解决方案

    转自: http://blog.csdn.net/zl1zl2zl3/article/details/78683855 在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Clo ...

  8. roadhog中如何拷贝文件

    一:使用 public 目录 我们约定 public 目录下的文件会在 server 和 build 时被自动 copy 到输出目录(默认是 ./dist)下.所以可以在这里存放 favicon, i ...

  9. PHP的垃圾回收

    PHP使用引用计数和写时拷贝(Copy-On-Write)来管理内存. 引用技术不言自明,写时拷贝工作原来如下: $worker = array("Fred", 35, " ...

  10. 第14讲:嵌入式SQL语言(基本技巧)

    一.交互式SQL的局限 & 嵌入式SQL的必要性 专业人员(如DBA)可以熟练地运用交互式SQL语言,但普通用户却不是那么容易上手,所以需要通过数据库应用程序来使用数据库.编写一个可以与数据库 ...