R_Studio(学生成绩)使用主成分分析实现属性规约
对11_1_4.csv成绩表进行主成分分析处理
setwd('D:\\data') list.files() #读取数据
dat=read.csv(file="11_1_4.csv",header=TRUE)
dat=dat[,-c(1,2,10,11)] #主成分分析
PCA=princomp(dat,cor=F)
names(PCA)#查看输出项 (PCA$sdev)^2#主成分特征根
summary(PCA)#主成分贡献率
PCA$loadings#主成分载荷
PCA$scores#主成分得分
Gary.R
> summary(PCA)#主成分贡献率
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
Standard deviation 21.923097 13.877129 11.2585833 9.08290162 7.12019143 5.87691397 5.25241336 #主成分的标准差
Proportion of Variance 0.482904 0.193489 0.1273575 0.08289078 0.05093782 0.03470209 0.02771882 #方差的贡献率
Cumulative Proportion 0.482904 0.676393 0.8037505 0.88664127 0.93757908 0.97228118 1.00000000 #方差的累积贡献率
> PCA$loadings#主成分载荷 Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
JAVA程序设计 0.236 0.163 0.297 0.909
电子商务技术 0.623 -0.756 0.124 0.118
计算机维护与维修 0.104 0.190 -0.133 0.960
计算机组成原理 0.470 0.338 0.208 -0.306 -0.719
数据库系统原理 0.365 0.314 0.335 0.761 0.131 -0.234
算法设计与分析 0.372 0.153 -0.894 0.110 -0.105 -0.126
大学英语A_4 0.239 0.393 0.155 -0.553 0.572 -0.287 -0.221 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Cumulative Var 0.143 0.286 0.429 0.571 0.714 0.857 1.000
> PCA$scores#主成分得分
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
[1,] 33.3196037 17.6874355 -0.25422380 -11.2669060 4.2917495 -1.7364204 4.97518007
[2,] 31.1801767 14.1593983 -4.47470827 -7.0283584 6.4786703 -5.8908663 7.45630606
[3,] 16.0593623 4.1733395 4.73087356 3.8211303 5.0571100 -2.4575435 3.28774257
[4,] 18.4599795 6.8838756 -5.17888938 -3.5337153 -3.5324890 9.0664813 -10.53284043
[5,] 22.6257727 -5.2588625 9.25342354 -0.7271976 9.8075163 8.4440318 -2.74254542
[6,] 18.4583765 0.3841284 -5.83949272 -8.1471985 -13.7079196 -6.2410719 -3.88663198
[7,] 20.7765859 13.6381355 -1.96535180 7.0825406 11.4998414 3.8088176 -6.24709551
[8,] 22.4055982 1.2572326 -4.52725913 8.5461387 -5.8650063 3.1370173 5.43043952
[9,] 10.6507844 10.4129351 15.42304832 4.4685204 1.1673139 8.1402877 -9.46484450
[10,] 17.1639629 -2.9525391 -10.01258904 -25.4490785 -5.4754708 -13.5277187 -7.95516018
[11,] 17.7945634 8.4024604 -0.35035882 2.3099044 -10.0253564 6.9582191 2.35849100
[12,] 12.8598877 -0.5588604 12.91817330 -2.2976186 5.7661594 0.3122876 1.63729804
[13,] 17.8084340 -3.0194490 -6.51371177 2.1379239 -4.3093249 -0.2923455 -2.14479586
[14,] 10.4585027 1.0417386 -19.73650352 14.2034399 1.8029565 6.4274103 -8.10728416
[15,] 10.3192625 -4.8219566 -3.60217599 -4.0807410 9.1303336 2.1788406 -0.47648506
[16,] 19.4722336 -9.0230062 13.96055565 -3.0505762 16.4767485 -0.0768518 1.97413948
[17,] 12.4466032 3.6624606 11.86842261 -2.2940459 -5.3363913 2.9385003 12.01728038
[18,] 10.9412050 -5.2512180 12.77385227 0.1711016 5.8379586 1.8466416 -7.84034045
[19,] 20.2156694 -11.9257596 -4.89824057 4.2539217 1.2212099 -1.3598156 0.69586378
[20,] 7.5757204 1.4629122 12.45201823 1.3380320 -11.4475596 -3.0560369 -0.33679014
[21,] 2.7560708 9.2670628 12.12499946 8.2058762 -6.6679381 -1.8767783 1.75044570
[22,] 6.9386608 21.9442175 16.71159245 2.4286736 -0.8955840 -6.6829971 -4.72743757
[23,] -9.9243741 0.4757100 0.01573284 1.4254642 2.4706595 -3.8905899 2.61108720
[24,] 6.5950893 3.7321278 -8.91241929 -0.5066062 6.3637581 1.2706868 1.10666607
[25,] 16.2275862 -4.7775620 -13.76590352 -22.8140031 5.2334105 9.4658474 3.59374787
[26,] -1.6370774 16.7224036 11.47807300 1.3839942 0.1871615 -3.8104935 -2.65749127
[27,] -4.9984010 6.7262848 9.33017015 9.4159721 -11.9826050 -1.9271300 -2.70926180
[28,] -0.9466044 -4.9963382 -13.44043198 6.8435895 7.0608288 -2.0568204 -6.36663646
[29,] -6.9405262 9.3086749 -4.25783374 13.8646433 0.9253015 -12.7755734 -0.51105509
[30,] 1.7219892 -5.6298414 -10.69930010 13.6120593 -5.2090180 -10.0628742 -4.78383632
[31,] -0.3541851 12.2312177 -6.08951913 10.4920885 -7.2794460 3.1028452 4.27513314
[32,] -4.3581531 -5.9643460 -7.16475122 6.4932550 -5.1895961 -1.7878238 2.16402149
[33,] -14.4453722 -0.1044177 1.61962685 9.0343576 -2.1145786 7.1296350 6.88736228
[34,] -3.8559156 -20.4106594 2.79158832 0.3726180 -4.4280421 -0.6170102 4.28772644
[35,] 13.6221594 -7.3733618 -4.65438509 -6.9531488 -10.0671883 -0.5898709 -0.36369030
[36,] -14.2113823 -16.6100486 9.07203345 -13.4515467 -2.0797826 -3.1567749 2.94481184
[37,] -10.3241338 -21.8739290 -0.25448952 -4.2178114 -5.8253442 -2.2815638 2.57099401
[38,] -1.6878990 -13.9744770 -32.25639847 1.7264204 -6.8524217 11.0633408 4.89836794
[39,] -21.9957957 -24.0405721 22.38147318 12.4602238 0.9192234 7.6823693 0.90812105
[40,] -27.3899348 -15.4321304 13.48446066 5.0113346 -2.4836177 -4.2459026 6.84884606
[41,] -36.8582514 -10.8359097 4.53814047 -4.9203118 12.2050066 -4.2598492 -1.97133591
[42,] -29.1632178 -5.8974902 17.50675815 -13.0108622 -1.3726696 7.3525642 -1.22636356
[43,] -39.0671787 22.1658349 -3.46728792 -2.2345130 5.9431736 -8.7253538 -0.08618077
[44,] -13.5103452 -28.6644930 -6.58252140 -11.1545147 2.1688582 -4.5438992 0.97442827
[45,] -52.4375907 51.4437648 -10.05342584 -9.6192156 1.9129401 5.2524403 9.21448312
[46,] -31.0312852 -12.0406147 -21.53204798 15.8935480 14.8361158 -4.9785873 2.95657858
[47,] -73.7162166 4.2544914 -3.95079643 -10.2388023 -6.6166558 7.3302988 -12.68745922
绘制各个科目主成分碎石图
screeplot(PCA,type="lines")
R_Studio(学生成绩)使用主成分分析实现属性规约的更多相关文章
- R_Studio(学生成绩)对数据进行属性构造处理
对“Gary.csv”中数据进行进行属性构造处理,增加“总成绩”属性 Gary.csv setwd('D:\\data') list.files() #数据读取 dat=read.csv(file=& ...
- R_Studio(学生成绩)使用cbind()函数对多个学期成绩进行集成
“Gary1.csv”.“Gary2.csv”.“Gary3.csv”中保存了一个班级学生三个学期的成绩 对三个学期中的成绩数据进行集成并重新计算综合成绩和排名,并按排名顺序排布(学号9位数11130 ...
- R_Studio(学生成绩)对数据缺失值md.pattern()、异常值分析(箱线图)
我们发现这张Gary.csv表格存在学生成绩不完全的(五十三名学生,三名学生存在成绩不完整.共四个不完整成绩) 79号大学语文.高等数学 96号中国近代史纲要 65号大学体育 (1)NA表示数据集中的 ...
- R_Studio(学生成绩)对两个班级学生成绩进行集合,重新计算学生综合测评成绩并对学生按综合测评成绩进行排名
对成绩表"11_1_1.csv" "11_2_1.csv"进行集成,并重新计算4门课程的平均分为综合测评,增加“排名”属性,并按排名排序 "11_1_ ...
- R_Studio(学生成绩)数据相关性分析
对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r ...
- R_Studio(学生成绩)对数值型数据进行统计量分析
对“Gary.csv”中的成绩数据进行统计量分析 基础数据分析 均值 中位数 极差 标准差 变异系数 1/4分位数 3/4分位数 四分位间距... ...分析 setwd('D:\\data' ...
- R_Studio(学生成绩)绘制频率分布直方图、分布饼图、折线比较图
对“Gary.csv”中的成绩数据进行分布分析 (1)按0-59,60-69,70-79,80-89,90-100分组绘制高级语言程序设计成绩的频率分布直方图. (2)按0-59,60-69,70-7 ...
- 【转】 [C/OC的那点事儿]NSMutableArray排序的三种实现(依赖学生成绩管理系统).
原文网址:http://blog.csdn.net/ministarler/article/details/17018839 c语言实现的学生成绩管理系统是面向过程的,而OC实现的学生成绩管理系统则是 ...
- Day_11【集合】扩展案例1_遍历打印学生信息,获取学生成绩的最高分,获取成绩最高的学员,获取学生成绩的平均值,获取不及格的学员数量
分析以下需求,并用代码实现: 1.按照以下描述完成类的定义 学生类 属性: 姓名name 年龄age 成绩score 行为: 吃饭eat() study(String content)(content ...
随机推荐
- Linux就该这么学——安装配置VM虚拟机
Vm虚拟机下载地址 : https://cloud.189.cn/t/zAfaQvJZRziu (访问码:6717) rehl镜像下载地址 : https://cloud.189.cn/t/67BJ ...
- python-day9(正式学习)
目录 深浅拷贝 拷贝 浅拷贝 深拷贝 异常处理 什么是异常 语法错误 逻辑错误 异常的种类 常用的异常 其他异常 异常处理 提前预防 事后预防 抛出异常(基本没用) 断言(调试用,现在基本上没用) 文 ...
- Keras模型训练的断点续训、早停、效果可视化
训练:model.fit()函数 fit(x=None, y=None, batch_size=None, epochs=, verbose=, callbacks=None, validation_ ...
- 使用Python基于OpenCV的图像油画特效
算法步骤: 1.获取图像的灰度图片 2.设计一个小方框(4x4/8x8 /10x10等),统计每个小方框的像素值 3.将0-255的灰度值划分成几个等级,并把第二步处理的结果映射到所设置的各个等级中, ...
- Spring的事务传播机制实例 (转)
1,Propagation.REQUIRED 如果当前没有事务,就新建一个事务,如果已经存在一个事务中,加入到这个事务中.详细解释在代码下方. 实例 员工service @Service public ...
- 比较接口:Comparable和Comparator
Comparable和Comparator是两个用于定义对象之间比较规则的接口. 一.public interface Comparator<T> Comparator接口中有两个方法(不 ...
- 使用Jsoup爬取网站图片
package com.test.pic.crawler; import java.io.File; import java.io.FileOutputStream; import java.io.I ...
- [转载]C++之using namespace std 详解与命名空间的使用
来源:https://blog.csdn.net/Bruce_0712/article/details/72824668 所谓namespace,是指标识符的各种可见范围.C++标准程序库中的所有标识 ...
- C语言字符串操作小结
1)字符串操作strcpy(p, p1) 复制字符串strncpy(p, p1, n) 复制指定长度字符串strcat(p, p1) 附加字符串strncat(p, p1, n) 附加指定长度字符串s ...
- 多线程 - 线程通信 suspend-resume wait-notify park-unpark 伪唤醒
线程通信(如 线程执行先后顺序,获取某个线程执行的结果等)有多种方式: 文件共享 线程1 --写入--> 文件 < --读取-- 线程2 网络共享 变量共享 线程1 --写入--> ...