题目描述

对于一个长度为$n$,且下标从$1$开始编号的序列$a$,我们定义它是「合法的」,当且仅当它满足以下条件:
·$a_1=1$
·对于$i\in [1,n),a_i\leqslant a_{i+1}\leqslant a_i+1$且$a_{i+1}$为正整数
·对于任意在$a$中出现过的数$v$,记它的出现次数为$s$,则$2\leqslant s\leqslant 5$
给定一个长度为$n$的序列$a$,其中有一些位置为$0$,你需要在这些位置上任意填数,使得$a$成为一个合法的序列,并且最大化$a_n$的值。


输入格式

第一行一个数$n$,表示序列的长度。
第二行$n$个整数,第$i$个整数表示$a_i$,如果$a_i=0$,则表示这个位置没有填数。


输出格式

如果不存在合法的填数方案,则输出$−1$;否则第一行输出一个整数,表示最大的$a_n$;第二行$n$个正整数,第$i$个数表示完成填数后的序列的第$i$个元素。 如果有多组合法的解,输出任意一组


样例

样例输入1:

7
0 1 0 0 0 3 0

样例输出1:

3
1 1 2 2 3 3 3

样例输入2:

4
0 0 0 3

样例输出2:

-1


数据范围与提示

对于$30\%$的数据,$n\leqslant 1,000$;
对于另外$30\%$的数据,数据保证随机生成;
对于$100\%$的数据,$2\leqslant n\leqslant 2\times {10}^5,0\leqslant a_i\leqslant {10}^5$。


题解

对于每个位置维护两个二元组,分别是$up(x,l)$表示当前位置能填的最大值$x$和连续个数$l$;$down(x,l)$表示当前为只能填数的最小值$x$和连续个数$l$。

求$up$就是尽可能的往上升,求$down$反之。

第一问就是最后一位的最大值,至于第二问倒着扫一边即可求出。

时间复杂度:$\Theta(n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n;
int a[200001];
pair<int,int> up[200001],down[200001];
int sum[100001],ans[200001];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
if(a[1]>1){puts("-1");return 0;}
a[1]=1;
up[1]=down[1]=make_pair(1,1);
for(int i=2;i<=n;i++)
{
up[i]=make_pair(up[i-1].first,up[i-1].second+1);
down[i]=make_pair(down[i-1].first,down[i-1].second+1);
if(up[i].second>2)
{
up[i].first++;
up[i].second=1;
}
if(down[i].second>5)
{
down[i].first++;
down[i].second=1;
}
if(a[i])
{
if(up[i].first==a[i])up[i].second=min(up[i].second,2);
if(up[i].first>a[i])up[i]=make_pair(a[i],2);
if(down[i].first<a[i])down[i]=make_pair(a[i],1);
if(up[i].first<a[i]||down[i].first>a[i]){puts("-1");return 0;}
}
}
if(up[n].second==1)up[n]=make_pair(up[n-1].first,up[n-1].second+1);
printf("%d\n",up[n].first);
ans[n]=up[n].first;
sum[a[n]]=1;
for(int i=n-1;i;i--)
{
if(a[i])ans[i]=a[i];
else
{
int flag=min(ans[i+1],up[i].first);
if(sum[flag]==5)flag--;
ans[i]=flag;
}
sum[ans[i]]++;
}
for(int i=1;i<=n;i++)printf("%d ",ans[i]);
return 0;
}

rp++

[CSP-S模拟测试]:简单的填数(贪心+模拟)的更多相关文章

  1. NOIP模拟测试「简单的区间·简单的玄学·简单的填数·简单的序列」

    简单的区间 $update$ 终于$AC$了 找到$(sum[r]+sum[l](sum表示以中间点为基准的sum)-mx)\%k==0$的点 注意这里$sum$表示是以$mid$为基准点,(即$su ...

  2. noip模拟12[简单的区间·简单的玄学·简单的填数]

    noip模拟12 solutions 这次考试靠的还是比较好的,但是还是有不好的地方, 为啥嘞??因为我觉得我排列组合好像白学了诶,文化课都忘记了 正难则反!!!!!!!! 害没关系啦,一共拿到了\( ...

  3. NOIP 模拟 $12\; \text{简单的填数}$

    题解 一个纯的贪心,被我搞成 \(dp\) 了,最后把错解删掉了,骗了 \(10pts\) 考虑如何贪心,设置一种二元组 \((x,l)\),\(x\) 表示当前值,\(l\) 表示当前最长连续长度. ...

  4. [CSP-S模拟测试]:飞(fly)(数状数组+简单几何)

    题目描述 $liu\_runda$决定提高一下知识水平,于是他去请教郭神.郭神随手就给了$liu\_runda$一道神题,$liu\_runda$并不会做,于是把这个题扔到联考里给高二的做.郭神有$n ...

  5. [CSP-S模拟测试]:简单的括号序列(组合数)

    题目传送门(内部题82) 输入格式 一行一个字符串$ss$,保证$ss$中只包含$'('$和$')'$. 输出格式 一行一个整数,表示满足要求的子序列数对$10^9+7$的结果. 样例 样例输入1: ...

  6. [CSP-S模拟测试]:小L的数(数位DP+模拟)

    题目传送门(内部题132) 输入格式 第一行一个整数$t$. 接下来$t$行每行一个整数$n$. 输出格式 $t$行,每行一个整数表示答案. 样例 样例输入: 41818231232691052109 ...

  7. [CSP-S模拟测试]:简单计算(数学)

    题目传送门(内部题104) 输入格式 第一行一个正整数$T$,表示该测试点内的数据组数,你需要对该测试点内的$T$组数据都分别给出正确的答案才能获得该测试点的分数. 接下来$T$组数据,每组数据一行两 ...

  8. [CSP-S模拟测试]:简单的操作(二分图+图的直径)

    题目描述 从前有个包含$n$个点,$m$条边,无自环和重边的无向图. 对于两个没有直接连边的点$u,v$,你可以将它们合并.具体来说,你可以删除$u,v$及所有以它们作为端点的边,然后加入一个新点$x ...

  9. [CSP-S模拟测试]:简单的期望(DP)

    题目描述 从前有个变量$x$,它的初始值已给出. 你会依次执行$n$次操作,每次操作有$p\%$的概率令$x=x\times 2$,$(100−p)\%$的概率令$x=x+1$. 假设最后得到的值为$ ...

随机推荐

  1. VLOOUP

    VLOOKUP函数是Excel中的一个纵向查找函数 该函数的语法规则如下:VLOOKUP(lookup_value,table_array,col_index_num,range_lookup) 参数 ...

  2. 微博API的申请

    https://segmentfault.com/a/1190000012548487

  3. QString的arg方法

    第一个参数是要填充的数字,第二个参数为最小宽度,第三个参数为进制,第四个参数为当原始数字长度不足最小宽度时用于填充的字符,如 QString name=QString("R%1C%2&quo ...

  4. Oracle 11g 概述

    始于:1970.6月份的一篇论文,IBM研究员埃德加‘考特<大型共享数据库的关系模型>(也是转折点)1977.6月Larry Ellison Bob Miner Ed Oates创办了“软 ...

  5. laravel框架基础知识总结

    一.laravel简介 laravel是一套优雅简介的PHP开发框架,受欢迎程度非常之高,功能强大,工具齐全:以下是本人在学习过程中记录的laravel比较基础的资料,权当学习笔记,请大神们多多指教 ...

  6. linux composer 安装与应用

    linux下composer安装与简单应用-------------------------------------安装------------------------------------//下载 ...

  7. 字符串模式匹配算法系列(一):BF算法

    算法背景: BF(Brute Force)算法,是一种在字符串匹配的算法中,比较符合人类自然思维方式的方法,即对源字符串和目标字符串逐个字符地进行比较,直到在源字符串中找到完全与目标字符串匹配的子字符 ...

  8. shell 删除隐藏文件.svn

    参考:https://blog.csdn.net/zhangxinrun/article/details/6409125 echo "recursively removing .svn fo ...

  9. 分布式服务防雪崩熔断器,Hystrix理论+实战。

    Hystrix是什么? hystrix对应的中文名字是"豪猪",豪猪周身长满了刺,能保护自己不受天敌的伤害,代表了一种防御机制,这与hystrix本身的功能不谋而合,因此Netfl ...

  10. a标签的锚点链接

    <a href="#creditor" class="clearfix nav_creditor"> <div class="sec ...