2019 Multi-University Training Contest 1 - 1011 - Function - 数论
http://acm.hdu.edu.cn/showproblem.php?pid=6588
新学到了一个求n以内与m的gcd的和的快速求法。也就是下面的S1。
①求:
$ \sum\limits_{i=1}^{n}gcd(m,i) $
②枚举d:
$ \sum\limits_{d|m} d \sum\limits_{i=1}^{n} [gcd(m,i)==d] $
③显然:
$ \sum\limits_{d|m} d \sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor} [gcd(\frac{m}{d},i)==1] $
到这一步已经可以递归求了,琪琪说是 \(O(n^{\frac{3}{4}})\) ,不过题解可以继续往下。
④为了方便直接考虑 $ \sum\limits_{i=1}^{n} [gcd(m,i)==1] $ ,反演(大概):
$ \sum\limits_{i=1}^{n} \sum\limits_{d|gcd(m,i)} \mu(d) $
⑤交换一下顺序,枚举d,很显然n以内的d的倍数都会贡献一个mu(d):
$ \sum\limits_{d|m} \mu(d) \lfloor\frac{n}{d}\rfloor $
下面的是根据题解的实现,不过是__int64的版本。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef __int64 lll;
const int mod = 998244353;
const int MAXN = 10000000;
int phi[MAXN + 1];
int pri[MAXN + 1], pritop;
bool notpri[MAXN + 1];
void sieve() {
int n = MAXN;
pri[1] = phi[1] = 1;
for(int i = 2; i <= n; i++) {
if(!pri[i])
pri[++pritop] = i, phi[i] = i - 1;
for(int j = 1, tmp; j <= pritop && (tmp = i * pri[j]) <= n; j++) {
pri[tmp] = 1;
if(i % pri[j])
phi[tmp] = phi[i] * phi[pri[j]];
else {
phi[tmp] = phi[i] * pri[j];
break;
}
}
}
}
ll S1(lll n, int m) {
//sigma gcd(i,m) [1,n]
ll res = 0;
for(int T = 1; T * T <= m; ++T) {
if(!(m % T)) {
res += (n / T) * phi[T];
if(T * T != m) {
res += (n / (m / T)) * phi[(m / T)];
}
}
}
res %= mod;
return res;
}
ll qpow(ll x, int n) {
ll res = 1;
while(n) {
if(n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
const int inv2 = qpow(2ll, mod - 2);
const int inv6 = qpow(6ll, mod - 2);
ll sigma1(ll x) {
return x * (x + 1ll) % mod * inv2 % mod;
}
ll sigma2(ll x) {
return x * (x + 1ll) % mod * (2ll * x + 1ll) % mod * inv6 % mod;
}
ll S2_1(int r, int T) {
int c = r / T;
ll res = 0;
res += 3ll * T * sigma2(c);
res += 3ll * sigma1(c);
res += c;
res %= mod;
return res;
}
ll S2(int r) {
ll res = 0;
for(int T = 1; T <= r; ++T) {
res += 1ll * phi[T] * S2_1(r, T) % mod;
}
res %= mod;
return res;
}
ll S0(lll n) {
lll i, i3;
for(i = 1;; ++i) {
lll tmp = i * i * i;
if(tmp > n) {
--i;
break;
} else
i3 = tmp;
}
ll res = 0;
res += S1(n, i) - S1(i3 - 1, i);
res += S2(i - 1);
res = (res % mod + mod) % mod;
return res;
}
inline lll read() {
lll x = 0;
char c;
do {
c = getchar();
} while(c < '0' || c > '9');
do {
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
} while(c >= '0' && c <= '9');
return x;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
sieve();
int T;
cin >> T;
lll n;
while(T--) {
n = read();
cout << S0(n) << endl;
}
}
其实具体的思路还是要先分成两部分来算,但是我当时不会计算这个S1导致T了。其实计算S2的时候在整数较大的时候发生了溢出。也就是c*c的位置。所以说以后非数组的值一律开ll就对了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef __int128 lll;
const int mod = 998244353;
const int MAXN = 10000000;
int pk[MAXN + 1];
int sum1[MAXN + 1];
int phi[MAXN + 1];
int pri[MAXN + 1], pritop;
bool notpri[MAXN + 1];
void sieve() {
int n = MAXN;
pri[1] = pk[1] = sum1[1] = phi[1] = 1;
for(int i = 2; i <= n; i++) {
if(!pri[i])
pri[++pritop] = i, phi[i] = i - 1, pk[i] = i, sum1[i] = 2 * i - 1;
for(int j = 1, p, tmp; j <= pritop && (p = pri[j]) && (tmp = i * p) <= n; j++) {
pri[tmp] = 1;
if(i % p) {
pk[tmp] = pk[p];
sum1[tmp] = 1ll * sum1[i] * sum1[p] % mod;
phi[tmp] = phi[i] * phi[p];
} else {
pk[tmp] = pk[i] * p;
if(pk[tmp] == tmp) {
sum1[tmp] = (1ll * sum1[i] * p % mod + (tmp - tmp / p)) % mod;
} else {
sum1[tmp] = 1ll * sum1[pk[tmp]] * sum1[tmp / pk[tmp]] % mod;
}
phi[tmp] = phi[i] * p;
break;
}
}
}
}
int sum2[MAXN + 1];
ll qpow(ll x, int n) {
ll res = 1;
while(n) {
if(n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
void init() {
for(int c = 1, c1 = 2, c2 = 7, f1 = 1; c <= MAXN;) {
sum2[c] = ((1ll * c2 - f1 + mod) % mod * sum1[c] % mod * qpow(c, mod - 2) % mod + c + sum2[c - 1]) % mod;
++c, ++c1, f1 = c2 + 1;
c2 = (1ll * c1 * c1 % mod * c1 % mod - 1 + mod) % mod;
}
}
ll S1(lll n, int m) {
//sigma gcd(i,m) [1,n]
ll res = 0;
for(int T = 1; T * T <= m; ++T) {
if(!(m % T)) {
res += (n / T) * phi[T];
if(T * T != m) {
res += (n / (m / T)) * phi[(m / T)];
}
}
}
res %= mod;
return res;
}
ll S0(lll n) {
lll i, i3;
for(i = 1;; ++i) {
lll tmp = i * i * i;
if(tmp > n) {
--i;
break;
} else
i3 = tmp;
}
ll res = 0;
res += S1(n, i) - S1(i3 - 1, i);
res += sum2[i - 1];
res = (res % mod + mod) % mod;
return res;
}
inline lll read() {
lll x = 0;
char c;
do {
c = getchar();
} while(c < '0' || c > '9');
do {
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
} while(c >= '0' && c <= '9');
return x;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
sieve();
init();
int T;
cin >> T;
lll n;
while(T--) {
n = read();
cout << S0(n) << endl;
}
}
2019 Multi-University Training Contest 1 - 1011 - Function - 数论的更多相关文章
- 2014 Multi-University Training Contest 1/HDU4861_Couple doubi(数论/法)
解题报告 两人轮流取球,大的人赢,,, 贴官方题解,,,反正我看不懂.,,先留着理解 关于费马小定理 关于原根 找规律找到的,,,sad,,, 非常easy找到循环节为p-1,每个循环节中有一个非零的 ...
- 2019 Multi-University Training Contest 2 - 1011 - Keen On Everything But Triangle - 线段树
http://acm.hdu.edu.cn/showproblem.php?pid=6601 首先要贪心地想,题目要最长的边长,那么要怎么构造呢?在一段连续的区间里面,一定是拿出最长的三根出来比,这样 ...
- 2016 Multi-University Training Contest 5 1011 Two DP
http://acm.hdu.edu.cn/showproblem.php?pid=5791 HDU5791 Two 题意 :两个数组,多少个不连续子串相等 思路: dp[i][j] :a串i结尾,b ...
- HDU 6342.Problem K. Expression in Memories-模拟-巴科斯范式填充 (2018 Multi-University Training Contest 4 1011)
6342.Problem K. Expression in Memories 这个题就是把?变成其他的使得多项式成立并且没有前导零 官方题解: 没意思,好想咸鱼,直接贴一篇别人的博客,写的很好,比我的 ...
- 2016 Multi-University Training Contest 3 1011【鸽巢原理】
题解: 坐标(0,m)的话,闭区间,可能一共有多少曼哈顿距离? 2m 但是给一个n,可能存在n(n+1)/2个曼哈顿距离 所以可以用抽屉原理了 当n比抽屉的数量大,直接输出yes 不用计算 那...N ...
- 2019 Nowcoder Multi-University Training Contest 4 E Explorer
线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...
- 2019 Nowcoder Multi-University Training Contest 1 H-XOR
由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...
- 2019杭电多校一 K. Function (数论)
大意: 给定$n(n\le 10^{21})$, 求$\sum\limits_{i=1}^n gcd(\lfloor\sqrt[3]{i}\rfloor,i)\mod 998244353$ 首先立方根 ...
- 2015 Multi-University Training Contest 8 hdu 5390 tree
tree Time Limit: 8000ms Memory Limit: 262144KB This problem will be judged on HDU. Original ID: 5390 ...
随机推荐
- linux NFS 的安装准备
关闭 iptables 和 selinux [root@allentuns ~]# service iptables stop [root@allentuns ~]# chkconfig iptabl ...
- python if-else替代三元表达式
python中判断一个数是否是偶数的常规代码: def _compare(data): if data % 2 == 0: return True else: return False # 调用偶数判 ...
- Codeforces 1215E 状压DP
题意:给你一个序列,你可以交换序列中的相邻的两个元素,问最少需要交换多少次可以让这个序列变成若干个极大的颜色相同的子段. 思路:由于题目中的颜色种类很少,考虑状压DP.设dp[mask]为把mask为 ...
- 记一次 gunicorn 启动 flask 出问题的经历
出错现象: gunicorn+nginx+flask 部署项目, 部署过程没问题,项目也正常启动了,但是一旦访问接口,就会报错: Traceback (most recent call last): ...
- qt05 音乐播放器
这些步骤可实现音乐播放,但是列表不能显示 music = new QMediaPlayer(this); playlist = new QMediaPlaylist(this); playlist-& ...
- oracle 汇编04
General-Purpose Instructions The general-purpose instructions perform basic data movement, memory ad ...
- python如何查看内存占用空间
我们如何查看变量占用了多少内存空间呢 首先我们引用sys模块,在使用getsizeof()方法 import sys L = [x for x in range(10000)] print(sys.g ...
- 修改pom项目版本 jenkins 关联 shell命令
#获取pom文件内的项目版本 version=`awk '/<version>[^<]+<\/version>/{gsub(/<version>|<\/ ...
- ForkJoinPool源码简单解析
ForkJoin框架之ForkJoinTask java 阅读约 62 分钟 前言 在前面的文章"CompletableFuture和响应式编程"中提到了ForkJoinTas ...
- stream benchmark 介绍
英文原版 https://www.cs.virginia.edu/stream/ref.html FAQ中有关于STREAM_ARRAY_SIZE NTIME OFFSET STREAM_TYPE的设 ...