题目

小w 偶然间见到了一个DAG。

这个DAG 有m 层,第一层只有一个源点,最后一层只有一个汇点,剩下的每一层都有k 个节点。

现在小w 每次可以取反第i(1 < i < n - 1) 层和第i + 1 层之间的连边。也就是把原本从(i, k1) 连到(i + 1, k2) 的边,变成从(i, k2) 连到(i + 1, k1)。

请问他有多少种取反的方案,把从源点到汇点的路径数变成偶数条?

答案对998244353 取模。

状压dp

考虑用dp,

因为k<=10,而路径数只分奇偶,那可以用二进制来表示,

设\(f_{i,s}\)第i层的路径数状态位s的方案数。

根据边转移就可以了,

但是这样时间复杂度位\(O(n2^kk^2)\)

考虑优化,读入的每个点连出去的边都可以用二进制来表示,用位运算,这样就变成\(O(nk2^k)\)的了。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const int mo=998244353;
const int N=10005;
using namespace std;
int f[N][1034];
int n,m,b[N][12][12],mi[12],fb[N][12][12],bb[N][12],bc[N][12];
int read(int &n)
{
char ch=' ';int q=0,w=1;
for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
if(ch=='-')w=-1,ch=getchar();
for(;ch>='0' && ch<='9';ch=getchar())q=(q<<1)+(q<<3)+ch-'0';n=q*w;return n;
}
int main()
{
mi[0]=1;
for(int i=1;i<=11;i++) mi[i]=mi[i-1]*2;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) read(b[1][1][i]),bb[1][1]+=b[1][1][i]*mi[i-1];
for(int i=2;i<=n-2;i++)
for(int j=1;j<=m;j++)
for(int k=1;k<=m;k++) read(b[i][j][k]),fb[i][k][j]=b[i][j][k],bb[i][j]+=b[i][j][k]*mi[k-1],bc[i][k]+=fb[i][k][j]*mi[j-1];
for(int i=1;i<=m;i++) read(b[n-1][i][1]),bb[n-1][i]+=b[n-1][i][1];
f[1][1]=1;
for(int i=1;i<=n-1;i++)
for(int j=0;j<=mi[m]-1;j++)
{
int t=f[i][j];
if(t)
{
int tt=0;
for(int k=1;k<=m;k++)
tt^=bb[i][k]*bool(mi[k-1]&j);
f[i+1][tt]=(1ll*f[i+1][tt]+t)%mo;
if(i==1 || i==n-1) continue;
tt=0;
for(int k=1;k<=m;k++)
tt^=bc[i][k]*bool(mi[k-1]&j);
f[i+1][tt]=(1ll*f[i+1][tt]+t)%mo;
}
}
printf("%lld",f[n][0]);
}

【NOIP2017提高A组模拟10.7】Adore的更多相关文章

  1. NOIP2017提高A组模拟10.6】Biology

    题目 trie 暴力就是对于每个询问的T个字符串 第i个和第i+1个直接个从后暴力枚举每位是否相同, 但这个方法TLE 我们考虑是否可以用更快的方法来求出两个字符串的最长公共后缀. 我们把所有的字符串 ...

  2. JZOJ 5328. 【NOIP2017提高A组模拟8.22】世界线

    5328. [NOIP2017提高A组模拟8.22]世界线 (File IO): input:worldline.in output:worldline.out Time Limits: 1500 m ...

  3. JZOJ 5305. 【NOIP2017提高A组模拟8.18】C (Standard IO)

    5305. [NOIP2017提高A组模拟8.18]C (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB Description ...

  4. 【NOIP2017提高A组模拟9.17】猫

    [NOIP2017提高A组模拟9.17]猫 题目 Description 信息组最近猫成灾了! 隔壁物理组也拿猫没办法. 信息组组长只好去请神刀手来帮他们消灭猫.信息组现在共有n 只猫(n 为正整数) ...

  5. 【NOIP2017提高A组模拟9.17】组合数问题

    [NOIP2017提高A组模拟9.17]组合数问题 题目 Description 定义"组合数"S(n,m)代表将n 个不同的元素拆分成m 个非空集合的方案数. 举个例子,将{1,2,3}拆分成2 个 ...

  6. JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠

    JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...

  7. JZOJ 100029. 【NOIP2017提高A组模拟7.8】陪审团

    100029. [NOIP2017提高A组模拟7.8]陪审团 Time Limits: 1000 ms  Memory Limits: 131072 KB  Detailed Limits   Got ...

  8. JZOJ 5329. 【NOIP2017提高A组模拟8.22】时间机器

    5329. [NOIP2017提高A组模拟8.22]时间机器 (File IO): input:machine.in output:machine.out Time Limits: 2000 ms M ...

  9. JZOJ 5307. 【NOIP2017提高A组模拟8.18】偷窃 (Standard IO)

    5307. [NOIP2017提高A组模拟8.18]偷窃 (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Description ...

随机推荐

  1. 手写LVQ(学习向量量化)聚类算法

    LVQ聚类与k-means不同之处在于,它是有标记的聚类,设定带标签的k个原型向量(即团簇中心),根据样本标签是否与原型向量的标签一致,对原型向量进行更新. 最后,根据样本到原型向量的距离,对样本进行 ...

  2. 【并行计算-CUDA开发】Windows下opencl环境配置

    首先声明我这篇主要是根据下面网站的介绍, 加以修改和详细描述,一步一步在我自己的电脑上实现的, http://www.cmnsoft.com/wordpress/?tag=opencl&pag ...

  3. Java架构师 -- 知识库

    1,CSDN知识库: http://lib.csdn.net/base/architecture 2,淘宝

  4. aws 基于延迟策略配置dns故障切换

    前提:由于国内访问首尔地区经常出现不稳定情况,现将请求从nginx(sz)转发到nginx(hk)再转发到首尔地区,在基于不改变nginx(seoul)的配置的前提下,引入aws的延迟策略,同时保证国 ...

  5. [转帖]DotNetCore跨平台~System.DrawingCore部署Linux需要注意的

    DotNetCore跨平台~System.DrawingCore部署Linux需要注意的   https://www.bbsmax.com/A/QV5ZemYVJy/?tdsourcetag=s_pc ...

  6. kettle An error occurred, processing will be stopped: 错误 解决方法

    上午在使用KETTLE时,报了一个 An error occurred, processing will be stopped: 错误,手动跑没有问题,用jekens调用就报错. 具体原因不清楚,后面 ...

  7. axios模块封装和分类列表实现

    这个作用 主要还是为了让代码更加的,清晰. 不要全部都放到  created(){}  这个方法下面.把这些代码全部抽离出去. 这里就只是去调用方法.1. src 目录下,新建文件夹---  rest ...

  8. 关于前端JS判断字符串是否包含另外一个字符串的方法总结

    RegExp 对象方法 test() var str = "abcd"; var reg = RegExp(/d/); console.log(reg.test(str)); // ...

  9. 基于Keras的OpenAI-gym强化学习的车杆/FlappyBird游戏

    强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent ...

  10. 多进程-Pool进程池

    from multiprocessing import Pool import os,time def Foo(i): time.sleep(2) print("in process&quo ...