【源码解读】cycleGAN(二) :训练
源码地址:https://github.com/aitorzip/PyTorch-CycleGAN
训练的代码见于train.py,首先定义好网络,两个生成器A2B, B2A和两个判别器A, B,以及对应的优化器(优化器的设置保证了只更新生成器或判别器,不会互相影响)
###### Definition of variables ######
# Networks
netG_A2B = Generator(opt.input_nc, opt.output_nc)
netG_B2A = Generator(opt.output_nc, opt.input_nc)
netD_A = Discriminator(opt.input_nc)
netD_B = Discriminator(opt.output_nc)
# Optimizers & LR schedulers
optimizer_G = torch.optim.Adam(itertools.chain(netG_A2B.parameters(), netG_B2A.parameters()),
lr=opt.lr, betas=(0.5, 0.999))
optimizer_D_A = torch.optim.Adam(netD_A.parameters(), lr=opt.lr, betas=(0.5, 0.999))
optimizer_D_B = torch.optim.Adam(netD_B.parameters(), lr=opt.lr, betas=(0.5, 0.999))
然后是数据
# Dataset loader
transforms_ = [ transforms.Resize(int(opt.size*1.12), Image.BICUBIC),
transforms.RandomCrop(opt.size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
dataloader = DataLoader(ImageDataset(opt.dataroot, transforms_=transforms_, unaligned=True),
batch_size=opt.batchSize, shuffle=True, num_workers=opt.n_cpu)
接着就可以求取损失,反传梯度,更新网络,更新网络的时候首先更新生成器,然后分别更新两个判别器
生成器:损失函数=身份损失+对抗损失+循环一致损失
###### Generators A2B and B2A ######
optimizer_G.zero_grad() # Identity loss
# G_A2B(B) should equal B if real B is fed
same_B = netG_A2B(real_B)
loss_identity_B = criterion_identity(same_B, real_B)*5.0
# G_B2A(A) should equal A if real A is fed
same_A = netG_B2A(real_A)
loss_identity_A = criterion_identity(same_A, real_A)*5.0 # GAN loss
fake_B = netG_A2B(real_A)
pred_fake = netD_B(fake_B)
loss_GAN_A2B = criterion_GAN(pred_fake, target_real) fake_A = netG_B2A(real_B)
pred_fake = netD_A(fake_A)
loss_GAN_B2A = criterion_GAN(pred_fake, target_real) # Cycle loss
recovered_A = netG_B2A(fake_B)
loss_cycle_ABA = criterion_cycle(recovered_A, real_A)*10.0 recovered_B = netG_A2B(fake_A)
loss_cycle_BAB = criterion_cycle(recovered_B, real_B)*10.0 # Total loss
loss_G = loss_identity_A + loss_identity_B + loss_GAN_A2B + loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB
loss_G.backward() optimizer_G.step()
判别器A 损失函数= 真实样本分类损失 + 虚假样本分类损失
###### Discriminator A ######
optimizer_D_A.zero_grad() # Real loss
pred_real = netD_A(real_A)
loss_D_real = criterion_GAN(pred_real, target_real) # Fake loss
fake_A = fake_A_buffer.push_and_pop(fake_A)
pred_fake = netD_A(fake_A.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake) # Total loss
loss_D_A = (loss_D_real + loss_D_fake)*0.5
loss_D_A.backward() optimizer_D_A.step()
###################################
判别器B 损失函数= 真实样本分类损失 + 虚假样本分类损失
###### Discriminator B ######
optimizer_D_B.zero_grad() # Real loss
pred_real = netD_B(real_B)
loss_D_real = criterion_GAN(pred_real, target_real) # Fake loss
fake_B = fake_B_buffer.push_and_pop(fake_B)
pred_fake = netD_B(fake_B.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake) # Total loss
loss_D_B = (loss_D_real + loss_D_fake)*0.5
loss_D_B.backward() optimizer_D_B.step()
###################################
可以注意到,判别器损失中,虚假样本fake_A,fake_B都采用detach()操作,脱离计算图,这样判别器的损失进行反向传播不会对整个网络计算梯度,避免了不必要的计算
【源码解读】cycleGAN(二) :训练的更多相关文章
- YYModel 源码解读(二)之NSObject+YYModel.h (1)
本篇文章主要介绍 _YYModelPropertyMeta 前边的内容 首先先解释一下前边的辅助函数和枚举变量,在写一个功能的时候,这些辅助的东西可能不是一开始就能想出来的,应该是在后续的编码过程中 ...
- redux源码解读(二)
之前,已经写过一篇redux源码解读(一),主要分析了 redux 的核心思想,并用100多行代码实现一个简单的 redux .但是,那个实现还不具备合并 reducer 和添加 middleware ...
- swoft| 源码解读系列二: 启动阶段, swoft 都干了些啥?
date: 2018-8-01 14:22:17title: swoft| 源码解读系列二: 启动阶段, swoft 都干了些啥?description: 阅读 sowft 框架源码, 了解 sowf ...
- Spark学习之路 (十六)SparkCore的源码解读(二)spark-submit提交脚本
一.概述 上一篇主要是介绍了spark启动的一些脚本,这篇主要分析一下Spark源码中提交任务脚本的处理逻辑,从spark-submit一步步深入进去看看任务提交的整体流程,首先看一下整体的流程概要图 ...
- 【原】SparkContex源码解读(二)
版权声明:本文为原创文章,未经允许不得转载. 继续前一篇的内容.前一篇内容为: SparkContex源码解读(一)http://www.cnblogs.com/yourarebest/p/53266 ...
- Alamofire源码解读系列(二)之错误处理(AFError)
本篇主要讲解Alamofire中错误的处理机制 前言 在开发中,往往最容易被忽略的内容就是对错误的处理.有经验的开发者,能够对自己写的每行代码负责,而且非常清楚自己写的代码在什么时候会出现异常,这样就 ...
- ReactiveCocoa源码解读(二)
上一篇解读了ReactiveCocoa的三个重要的类的底层实现,本篇继续. 一.RACMulticastConnection 1.应用 RACMulticastConnection: 用于当一个信号被 ...
- YYModel 源码解读(二)之YYClassInfo.h (3)
前边3篇介绍了YYClassinfo 文件的组成单元,算是功能的分割,按照业务的设计思想来说,方向应该是相反的 由此引申出我们在设计api的思想其实和项目管理是很类似的----- 一些题外话 1.目的 ...
- PhotoSwipe源码解读系列(二)
作者: 铁锚 日期: 2013年12月19日 说明: 本系列文章为草稿,等待后期完善.源码是jQuery版本的,code.photoswipe-3.0.5.js 1. 代码开头,就是一些版权申明,没什 ...
- Netty源码解读(二)-服务端源码讲解
简单Echo案例 注释版代码地址:netty 代码是netty的源码,我添加了自己理解的中文注释. 了解了Netty的线程模型和组件之后,我们先看看如何写一个简单的Echo案例,后续的源码讲解都基于此 ...
随机推荐
- .NET面试题系列(二十)XX
遍历树.实现造成锁的代码.在线音乐网站 抽象工厂和工厂的区别 简单工厂 : 用来生产同一等级结构中的任意产品.(对于增加新的产品,无能为力) 工厂方法 :用来生产同一等级结构中的固定产品.(支持增加任 ...
- java大文件上传
上次遇到这样一个问题,客户上传高清视频(1G以上)的时候上传失败. 一开始以为是session过期或者文件大小受系统限制,导致的错误.查看了系统的配置文件没有看到文件大小限制,web.xml中sees ...
- CF Round #576 (Div. 2) Matching vs Independent Set
链接:Click here 题目意思:给你一个图,有3n个点,m条边,求是否有n条匹配边或n个独立点,其中匹配为没有公共点,独立为不相连 Solution: 考虑每个点对于第一种情况,最多只能贡献一次 ...
- 题解 CF1190B 【Tokitsukaze, CSL and Stone Game】
思路: 首先题目告诉我们,一次只能删去一个石子.当然有翻译时会注意,但是看英文题时总是容易忽略.. 先排序. 然后,你会发现,有些情况是一开始就输的,具体情况如下: 有两个 两个相等非零数.(a[x] ...
- Elastic-Job快速入门
1 Elastic-Job快速入门1.1 环境搭建1.1.1.版本要求JDK要求1.7及以上版本Maven要求3.0.4及以上版本zookeeper要求采用3.4.6及以上版本1.1.2.Zookee ...
- Windows10 pro & ent 禁用自动更新
为了节约可怜的一点点流量,这个设置还是很重要的. Step 1: 通过在命令提示符中执行gpedit.msc命令,打开组策略 Step 2: 打开管理模板->windows组件->wind ...
- Vuex入门(转)
参考:https://segmentfault.com/a/1190000015782272 https://www.cnblogs.com/y896926473/p/6709733.html 如果你 ...
- [BZOJ3990]:[SDOI2015]排序(搜索)
题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...
- clr/c++自定线程安全集合
代码如下: 难点重写索引器.重写基类方法.基类方法显示调用示例 generic <class T> public ref class SyncList : public List<T ...
- MYSQL,分别用一条语句交换两列的值与两行的值
测试表: CREATE TABLE `test` ( `id` ) NOT NULL AUTO_INCREMENT, `name` ) NOT NULL, ` DEFAULT CHARSET=utf8 ...