2018 CCPC 秦皇岛 I (状压DP)
题意:
首先t组数据 (t<=5),一个n代表有n件东西,每个东西可以代表两个物品,商品或者袋子,每个都有个值,如果这个要代表袋子的话,当前就代表是容量,而且必须把其他几件不是袋子的物品放一些进来,容量必须正好装满,问你有多少种合法的方案,袋子中放入的物品不同也代表不同,同一件物品只能放入一个袋子
(n<=15)
Sample Input
3
3
1 1 1
5
1 1 2 2 3
10
1 2 3 4 5 6 7 8 9 10
Sample Output
7
15
127
思路:首先我们看数据范围我们就能想到是状压DP,但是我们不能直接去0 1代表哪些是背包物品,这样我们就不确定物品怎么放入背包,所以我们预处理,我们预处理出所有状态是否可以是一个已经放满的背包,并且枚举状态中哪一个才是背包,为了方便计算
weight[i] 代表 该状态下所有物品的值的和
f[i] 代表该状态下 可以是一个放满的背包的种数
dp[i] 代表 该状态下合法的所有种数
我们可以利用weight 计算出 f[i],即我们枚举到当前位时,我们假设当前位是背包 weight[i]-a[i]==a[i] 如果是的话 f[i]++, 因为当前背包容量是a[i],其他总和也是a[i],即代表当前背包装满了
然后我们可以利用所有的单个装满的背包合并起来算出最后状态
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#define PI acos(-1.0)
#define E 1e-6
#define MOD 16007
#define INF 0x3f3f3f3f
#define N 16
#define LL long long
using namespace std;
int a[N];
int f[<<N];//组成袋子的合法方案数
int dp[<<N];//合法方案数
int weight[<<N];//第i种状态的重量
int main()
{
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]); for(int i=;i<(<<n);i++){
weight[i]=;
f[i]=;
dp[i]=1;
} for(int i=;i<=n;i++)//n位数字
for(int j=;j<(<<n);j++)//2^n种状态
if( <<(i-) & j )//若第i位是1
weight[j]+=a[i];//记录第j个状态的重量 for(int i=;i<=n;i++)//n位数字
for(int j=;j<(<<n);j++)//2^n种状态
if( <<(i-) & j )//若第i位是1
if(weight[j]-a[i]==a[i])//如果第j个状态的重量减去第i个物品的重量等于第i个物品的重量说明选择第j个状态是一个合法的袋子
f[j]++; for(int i=;i<(<<n);i++){//包裹2^n种状态
int k=(<<n)--i;//与i相斥的状态
for(int j=k;;j=(j-)&k){//选物品的状态且其不能选为包裹
dp[i|j]+=dp[j]*f[i];
if(j==)
break;
}
}
printf("%d\n",dp[(<<n)-]);
}
return ;
}
2018 CCPC 秦皇岛 I (状压DP)的更多相关文章
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp
2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp [P ...
- [BZOJ5248] 2018九省联考 D1T1 一双木棋 | 博弈论 状压DP
题面 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子 ...
- 2018.10.27 洛谷P2915奶牛混合起来Mixed Up Cows(状压dp)
传送门 状压dp入门题. 按照题意建一个图. 要求的就是合法的链的总数. 直接f[i][j]f[i][j]f[i][j]表示当前状态为jjj,下一位要跟iii连起来的方案数. 然后从没被选并且跟iii ...
- 2018.10.24 bzoj2064: 分裂(状压dp)
传送门 状压dp好题. 考虑对于两个给出的集合. 如果没有两个元素和相等的子集,那么只能全部拼起来之后再拆开,一共需要n1+n2−2n1+n2-2n1+n2−2. 如果有呢? 那么对于没有的就是子问题 ...
- ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP
题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...
- 2018.10.17 NOIP模拟 管道(状压dp)
传送门 状压dp好题. 怎么今天道道题都有点东西啊 对于今天题目神仙出题人先膜为上策:%%%%DzYoAk_UoI%%%% 设f[i][j]f[i][j]f[i][j]表示选取点的状态集合为iii,当 ...
- 2018.10.05 NOIP模拟 上升序列(状压dp)
传送门 状压dp好题. 首先需要回忆O(nlogn)O(nlog n)O(nlogn)求lislislis的方法,我们会维护一个单调递增的ddd数组. 可以设计状态f(s1,s2)f(s1,s2)f( ...
- 2018.10.01 NOIP模拟 偷书(状压dp)
传送门 状压dp经典题. 令f[i][j]f[i][j]f[i][j]表示到第i个,第i−k+1i-k+1i−k+1~iii个物品的状态是j时的最大总和. 然后简单维护一下转移就行了. 由于想皮一下果 ...
- 2018.09.28 hdu5434 Peace small elephant(状压dp+矩阵快速幂)
传送门 看到n的范围的时候吓了一跳,然后发现可以矩阵快速幂优化. 我们用类似于状压dp的方法构造(1(1(1<<m)∗(1m)*(1m)∗(1<<m)m)m)大小的矩阵. 然后 ...
随机推荐
- android app开发中的常用组件
1 Activity 1.1 Activity的启动 第一,android manifest中指定的主activity,点击app的icon启动进入. 第二,使用intent,在另外一个activit ...
- CentOS 7 下安装.NET Core SDK 2.1
一.RPM包安装 1.导入rpm源 sudo rpm -Uvh https://packages.microsoft.com/config/rhel/7/packages-microsoft-prod ...
- 单词数 HDU 2072 字符串输入控制
单词数 HDU 2072 字符串输入控制 题意 lily的好朋友xiaoou333最近很空,他想了一件没有什么意义的事情,就是统计一篇文章里不同单词的总数.下面你的任务是帮助xiaoou333解决这个 ...
- 小明种苹果(续)第十七次CCF认证
小明种苹果(续)第十七次CCF认证 题目 原题链接 ](http://118.190.20.162/view.page?gpid=T93) 很高心,在现在CCF CSP可以下载自己当时的答卷了,也就是 ...
- GUI程序原理分析
1,Qt 是一套跨平台的程序设计库,这套程序设计库主要用于 GUI 方面的程序设计开发,所以本系列博文主要是利用C++介绍 GUI 程序设计技术: 2,命令行应用程序: 1,命令行应用程序的特点(Co ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- Nginx 配置二级虚拟目录访问 Laravel 重写
server { listen 80; server_name _; root /opt/sites; index index.php index.html index.htm; etag on; g ...
- HDU 5266 pog loves szh III ( LCA + SegTree||RMQ )
pog loves szh III Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...
- 学习Golang语言(6):类型--切片
学习Golang语言(1): Hello World 学习Golang语言(2): 变量 学习Golang语言(3):类型--布尔型和数值类型 学习Golang语言(4):类型--字符串 学习Gola ...
- jQuery之筛选方法
1. 父parent.子children.find <div class="yeye"> <div class="father"> &l ...