题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁。不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别。从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法。

分析 : 

实际就是要解决 => 从 n 种物品中取出 m 个有多少种取法 ( 同种无法区分 )

计数问题的 DP 定义必须保证不重复计数

这里定义 dp[i+1][j] => 从前 i 种物品中取出 j 个的组合数

根据定义为了从前 i 种物品中取出 j 个,可以从前 i-1 中取出 j-k 个并从 i 种中取出 k 个

即 dp[i+1][j] = ∑dp[i][j-k] 【 0 ≤ k ≤ min(j, ant[i]) 】

但是这个递推式的求和太耗时间,实际可以优化,考虑两种情况 j ≤ ant[i] 和 j > ant[i]

① j ≤ ant[i] ( 即 j-1 < ant[i] )

此时 ∑ 的上界 min( j, ant[i] ) = j ,将式子展开有 dp[i][0]+dp[i][1]+dp[i][2]...dp[i][j] ( k 从大到小枚举 )

将展开式的 dp[i][j] 取出来那么将得到 ∑dp[i][j-1-k] 【 0 ≤ k ≤ j-1 】( 其实这个就是 dp[i+1][j-1] !!! )

那么最后 dp[i+1][j] = dp[i+1][j-1] + dp[i][j]

② j > ant[i]

此时 ∑ 的上界 min( j, ant[i] ) = ant[i],将式子展开有 dp[i][j-ant[i]]+dp[i][j-ant[i]+1]...dp[i][j]

对比 ① 的结果,很明显如果用 ① 的结果 - dp[i][j-ant[i]-1] 就能得到上面的展开式了!

所以 ② 的情况下,dp[i+1][j] = ( dp[i+1][j-1] + dp[i][j] ) - dp[i][j-ant[i]-1]

#include<stdio.h>
#include<string.h>
using namespace std;
;
][];
];
int main(void)
{
    int T, A, S, B;
    while(~scanf("%d %d %d %d", &T, &A, &S, &B)){

        memset(num, , sizeof(num));
        ; i<=A; i++)
            scanf("%d", &temp),
            num[temp-]++;

        ; i<=T; i++)
            dp[i][] = ;

        ; i<T; i++){
            ; j<=B; j++){
                 - num[i] >= )
                    dp[i+][j] = (dp[i+][j-] + dp[i][j] - dp[i][j--num[i]] + mod)%mod;
                else
                    dp[i+][j] = (dp[i+][j-] + dp[i][j])%mod;
            }
        }

        ;
        for(int i=S; i<=B; i++)
            ans = (ans + dp[T][i])%mod;
        printf("%d\n", ans);
    }
    ;
}

其实 DP 的阶段 ( 数组第一维 ) 只跟前一个有关系,故用滚动数组优化

#include<stdio.h>
#include<string.h>
using namespace std;
;
][];
];
int main(void)
{
    int T, A, S, B;
    while(~scanf("%d %d %d %d", &T, &A, &S, &B)){

        memset(num, , sizeof(num));
        ; i<=A; i++)
            scanf("%d", &temp),
            num[temp-]++;

        ;
        dp[idx][] = dp[idx^][] = ;
        ; i<T; i++,idx^=){
            ; j<=B; j++){
                 - num[i] >= )
                    dp[idx^][j] = (dp[idx^][j-] + dp[idx][j] - dp[idx][j--num[i]] + mod)%mod;
                else
                    dp[idx^][j] = (dp[idx^][j-] + dp[idx][j])%mod;
            }
        }

        ;
        for(int i=S; i<=B; i++)
            ans = (ans + dp[idx][i])%mod;
        printf("%d\n", ans);
    }
    ;
}

POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )的更多相关文章

  1. poj 3046 Ant Counting(多重集组合数)

    Ant Counting Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total ...

  2. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

  3. poj3046 Ant Counting——多重集组合数

    题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...

  4. poj 3046 Ant Counting (DP多重背包变形)

    题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...

  5. POJ 3046 Ant Counting DP

    大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...

  6. poj 3046 Ant Counting——多重集合的背包

    题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...

  7. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  8. POJ 1160:Post Office 邮局经典DP

    Post Office Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17168   Accepted: 9270 Desc ...

  9. 多重集组合数 简单dp

    #include <cstdio> #include <iostream> using namespace std; +; +; +; ; int n,m,M; int a[m ...

随机推荐

  1. JavaScript对象之--- RegExp

    1.概述 正则表达式是描述字符模式的对象. 正则表达式用于对字符串模式匹配以及检索替换: 2.语法 前者为模式,后者为修饰符. var reg = new RegExp( "xyz" ...

  2. sentos7忘记root密码,重置密码

    一.两种模式:单用户模式和救援模式 下面示例救援模式 1.重启linux系统主机并出现引导界面,按e键进入内核编辑界面: 2.在linux16参数那一行的最后面追加“rd.break”参数,记住要空开 ...

  3. Go语言入门篇-jwt(json web token)权限验证

    一.token.cookie.session的区别 1.cookie Cookie总是保存在客户端中,按在客户端中的存储位置,可分为内存Cookie和硬盘Cookie. 内存Cookie由浏览器维护, ...

  4. Docker最详细入门教程

    Docker原理.详细入门教程 https://blog.csdn.net/deng624796905/article/details/86493330 阮一峰Docker入门讲解 http://ww ...

  5. Linux下安装tomcat与配置

    准备工作:将下载好的tomcat 9.0上传到自己的阿里云服务器(推荐根目录下) 附下载地址:https://archive.apache.org/dist/tomcat/tomcat-9/v9.0. ...

  6. Windows上Tomcat安装以及解决乱码问题

    Windows上Tomcat安装以及解决乱码问题 下载tomcat8 1.进入tomcat官网 官方网站 2.选择windows的版本 解压 确定自己配置好了jdk jdk的相关配置 配置好tomca ...

  7. [Codeforces 1239D]Catowise City(2-SAT)

    [Codeforces 1239D]Catowise City(2-SAT) 题面 有n个主人,每个主人都有一只猫.每个主人认识一些猫(包括自己的猫).现在要选出一些人和一些猫,个数均大于0且总共为n ...

  8. python 序列解包(解压缩)

    序列解包(解压缩) 所学的解压缩 如果我们给出一个列表,我们需要一次性取出多个值,我们是不是可以用下面的方式实现呢? name_list = ['nick', 'egon', 'jason'] x = ...

  9. neo4j 初探

    neo4j 初探 参考 转载:http://shomy.top/2018/06/08/neo4j-start/ 近期需要处理图数据,考察后打算使用neo4j, 相比其他一些图数据库,neo4j开源,跨 ...

  10. php-redis的配置与使用

    从此处下载 https://codeload.github.com/phpredis/phpredis/zip/develop 也就php-redis的安装包,在zip格式,在windows下解压,将 ...