题意:有一个n * n的棋盘,每个棋盘有某些矩形区域被染成了黑色(这些矩形区域有可能相交),问把所有黑色区域染成白色的最小花费是多少?你每次可以选择把一个矩形区域染成白色,花费是染色的矩形区域长和宽的最小值。

思路:容易发现,假设一个矩形的坐标是(l1, r1, l2, r2),假设(l2 - l1 < r2 - r1), 那么我们把r1和r2变成1和n对答案不会有影响。那么,我们发现问题转化为了选最少的行和列使得所有的黑色区域被覆盖,换句话说,就是所有的点至少被一个行货列所覆盖。我们把行看成左边的点,列看成右边的点,黑色的点看成边,那么这个问题就变成了求二分图的最小点覆盖。但是直接用二分图做边数点数会很大,所有我们可以离散化之后变成求网络流的最大流。

代码:

#include <bits/stdc++.h>
#define pii pair<int, int>
#define LL long long
#define INF 1e18
using namespace std;
const int maxm = 100100;
const int maxn = 510;
bool v[310][310];
int head[maxn], Next[maxm * 6], ver[maxm * 6], tot = 1;
int d[maxn], s ,t;
LL edge[maxm * 6];
void add(int x, int y, LL z) {
ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot;
ver[++tot] = x, edge[tot] = 0, Next[tot] = head[y], head[y] = tot;
}
queue<int> q;
bool bfs() {
memset(d, 0, sizeof(d));
while(q.size()) q.pop();
q.push(s), d[s] = 1;
while(q.size()) {
int x = q.front();
q.pop();
for (int i = head[x]; i; i = Next[i]) {
if(edge[i] && !d[ver[i]]) {
q.push(ver[i]);
d[ver[i]] = d[x] + 1;
if(ver[i] == t) return 1;
}
}
}
return 0;
}
LL dinic(int x, LL flow) {
if(x == t) return flow;
LL rest = flow, k;
for (int i = head[x]; i && rest; i = Next[i]) {
if(edge[i] && d[ver[i]] == d[x] + 1) {
k = dinic(ver[i], min(rest, edge[i]));
if(!k) d[ver[i]] = 0;
edge[i] -= k;
edge[i ^ 1] += k;
rest -= k;
}
}
return flow - rest;
}
vector<int> X, Y;
vector<pii> L, R;
int main() {
int n, m, l1, r1, l2, r2, sz;
scanf("%d%d", &n, &m);
X.push_back(0), X.push_back(n);
Y.push_back(0), Y.push_back(n);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d%d", &l1, &r1, &l2, &r2);
l1--, r1--;
L.push_back(make_pair(l1, r1));
R.push_back(make_pair(l2, r2));
X.push_back(l1), X.push_back(l2);
Y.push_back(r1), Y.push_back(r2);
}
sort(X.begin(), X.end());
sort(Y.begin(), Y.end());
sz = unique(X.begin(), X.end()) - X.begin();
while(X.size() > sz) X.pop_back();
sz = unique(Y.begin(), Y.end()) - Y.begin();
while(Y.size() > sz) Y.pop_back();
s = 210, t = 211;
for (int i = 0; i < X.size() - 1; i++) {
add(s, i, X[i + 1] - X[i]);
}
for (int i = 0; i < Y.size() - 1; i++) {
add(i + X.size(), t, Y[i + 1] - Y[i]);
}
for (int i = 0; i < m; i++) {
l1 = lower_bound(X.begin(), X.end(), L[i].first) - X.begin();
r1 = lower_bound(Y.begin(), Y.end(), L[i].second) - Y.begin();
l2 = lower_bound(X.begin(), X.end(), R[i].first) - X.begin();
r2 = lower_bound(Y.begin(), Y.end(), R[i].second) - Y.begin();
for (int i = l1; i < l2; i++) {
for (int j = r1; j < r2; j++) {
v[i][j] = 1;
}
}
}
for (int i = 0; i < X.size() - 1; i++) {
for (int j = 0; j < Y.size() - 1; j++) {
if(v[i][j]) {
add(i, j + X.size(), INF);
}
}
}
LL flow = 0, maxflow = 0;
while(bfs())
while(flow = dinic(s, INF)) maxflow += flow;
printf("%lld\n", maxflow);
}

  

Codeforces 1198E Rectangle Painting 2 最小点覆盖(网络流)的更多相关文章

  1. codeforces 1198E Rectangle Painting 2 最小点覆盖

    题目传送门 题意: 有一个$n∗n$的网格,网格中有一些矩形是黑的,其他点都是白的. 你每次可以花费$ min (h,w)$的代价把一个$h*w$的矩形区域变白.求把所有黑格变白的最小代价. 思路: ...

  2. Codeforces - 1198D - Rectangle Painting 1 - dp

    https://codeforces.com/contest/1198/problem/D 原来是dp的思路,而且是每次切成两半向下递归.好像在哪里见过类似的,貌似是紫书的样子. 再想想好像就很显然的 ...

  3. Codeforces #576 Rectangle Painting 1 | div1D | div2F | DP | Rustlang

    原题链接 大意 n*n正方形 有黑有白 每次可以选择一个 矩形把它全变成白色,代价是max(长,宽) 求吧 整个正方形 全变白 的最小代价 数据范围 n <= 50 题解 首先如果 我们刷了两个 ...

  4. Jewelry Exhibition(最小点覆盖集)

    Jewelry Exhibition 时间限制: 1 Sec  内存限制: 64 MB提交: 3  解决: 3[提交][状态][讨论版] 题目描述 To guard the art jewelry e ...

  5. 紫书 习题 11-9 UVa 12549 (二分图最小点覆盖)

    用到了二分图的一些性质, 最大匹配数=最小点覆盖 貌似在白书上有讲 还不是很懂, 自己看着别人的博客用网络流写了一遍 反正以后学白书应该会系统学二分图的,紫书上没讲深. 目前就这样吧. #includ ...

  6. Cogs 1632. 搬运工(二分图最小点覆盖)

    搬运工 ★ 输入文件:worker.in 输出文件:worker.out 简单对比 时间限制:1 s 内存限制:256 MB [题目描述] 小涵向小宇推荐了一款小游戏. 游戏是这样的,在一个n*n的地 ...

  7. Strategic game(无向?)二分图最小点覆盖(Poj1463,Uva1292)

    原题链接 此题求二分图的最小点覆盖,数值上等于该二分图的最大匹配.得知此结论可以将图染色,建有向图,然后跑匈牙利/网络流,如下.然而... #include<iostream> #incl ...

  8. ACM/ICPC 之 机器调度-匈牙利算法解最小点覆盖集(DFS)(POJ1325)

    //匈牙利算法-DFS //求最小点覆盖集 == 求最大匹配 //Time:0Ms Memory:208K #include<iostream> #include<cstring&g ...

  9. 【POJ 3041】Asteroids (最小点覆盖)

    每次选择清除一行或者一列上的小行星.最少选择几次. 将行和列抽象成点,第i行为节点i+n,第j列为节点j,每个行星则是一条边,连接了所在的行列. 于是问题转化成最小点覆盖.二分图的最小点覆盖==最大匹 ...

随机推荐

  1. WPF 几种常用控件样式的总结

    这里把wpf中几种常用样式总结一下,后期可以直接拷贝使用,呵呵 一.Button <ResourceDictionary xmlns="http://schemas.microsoft ...

  2. Facebook被指控通过其应用程序进行监视用户照片

    Facebook被批使用其应用程序收集有关用户及其朋友的信息,其中包括一些尚未注册社交网络,阅读短信,跟踪其位置并在手机上查看照片的人. 有关大众监督的声称是前创业公司Six4Three对该公司提起的 ...

  3. 远程桌面连接,运维工程师-必备软件【MultiDesk】

    实习时,在本地一家大型女装公司做桌面运维,服务器碰得到少,大部分时间都是在维护同事的电脑桌面,什么360全家桶了,毒霸了,都是通过远程工具 teamviewer 去搞定的. 后来做了前端开发,免不了自 ...

  4. centos7在线安装mysql8.0.16

    一.官网复制安装源地址: 1.进入官网地址:https://dev.mysql.com/downloads/repo/yum/ 二.进入/usr/local目录下 ,创建mysql文件夹 三.使用命令 ...

  5. Linux进程管理——查看内存的工具

    Linux进程管理——查看内存的工具 一查看内存的工具vmstat vmstat命令:虚拟内存信息vmstat [options] [delay [count]]vmstat 2 5 [root@ce ...

  6. python实现计时器(装饰器)

    1.写一个装饰器,查看函数执行的时间 import time # 装饰器run_time,@run_time加在谁头上,谁就是参数fundef run_time(fun): start_time = ...

  7. How to: Use a Custom User Name and Password Validator(WCF)

    在wcf中使用自定义的用户名和密码验证方式 https://msdn.microsoft.com/en-us/library/aa702565.aspx http://www.codeproject. ...

  8. linux系统中查看日志及系统信息

    cat tail -f 日 志 文 件说 明 /var/log/message系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一 /var/log/secure与安全相关的日志 ...

  9. 信息安全-攻击-XSS:XSS/CSS 攻击

    ylbtech-信息安全-攻击-XSS:XSS/CSS 攻击 XSS攻击通常指的是通过利用网页开发时留下的漏洞,通过巧妙的方法注入恶意指令代码到网页,使用户加载并执行攻击者恶意制造的网页程序.这些恶意 ...

  10. Bootstarp-源码分析-alert.js v3.x和v4.x的对比

    一些概念 1. 使用 data-api 调用 就是给所有带有data-dismiss="alert"的元素绑定点击事件 v3.x: $(document).on('click.bs ...