Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5463    Accepted Submission(s):
2880

Problem Description
The title of this problem is familiar,isn't it?yeah,if
you had took part in the "Rookie Cup" competition,you must have seem this
title.If you haven't seen it before,it doesn't matter,I will give you a
link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today
we are not desiring the maximum value of bones,but the K-th maximum value of the
bones.NOTICE that,we considerate two ways that get the same value of bones are
the same.That means,it will be a strictly decreasing sequence from the 1st
maximum , 2nd maximum .. to the K-th maximum.

If the total number of
different values is less than K,just ouput 0.

 
Input
The first line contain a integer T , the number of
cases.
Followed by T cases , each case three lines , the first line contain
two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the
number of bones and the volume of his bag and the K we need. And the second line
contain N integers representing the value of each bone. The third line contain N
integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of
the total value (this number will be less than 231).
 
Sample Input
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
Sample Output
12 2 0
 
 
题目的意思就是求01背包的第k优解,则自然想到(我感觉一点都不自然)多一维,dp【j】【k】;
状态dp【j】的前k个最优解,都是由dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]转移过来(没有证明过,但是对的),可以用优先队列来维护。
在求解dp[j][k]时,我们首先把dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]统统放进优先队列(会自己从大到小排),然后我们依次拿出k个,放进dp[j][1.....k]就ok了,但是要避免重复。
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
int main()
{
int T;
int dp[][];
cin >> T;
priority_queue<int>q;//默认从大到小排
while (T--)
{
memset(dp, , sizeof(dp));
int n, vv, kk;
cin >> n >> vv >> kk;
int i, j, k;
int v[], w[];
for (i = ; i <= n; i++)
cin >> v[i];
for (i = ; i <= n; i++)
cin >> w[i];
for (i = ; i <= n; i++)
{
for (j = vv; j >= w[i]; j--)//01背包的循环
{
while (!q.empty()) q.pop();
for (k = ; k <= kk; k++)
{//dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]放进队列
q.push(dp[j][k]);
q.push(dp[j - w[i]][k] + v[i]);
}
k = ;
while ()
{
if (q.empty() || k == kk+) break;
if (k > && q.top() != dp[j][k-])
{//这一步避免重复, q.top() == dp[j][k-1]要排除
dp[j][k] = q.top(); k++;
}
else if (k == )
{
dp[j][k] = q.top(); k++;
}
q.pop();
}
}
}
cout << dp[vv][kk] << endl;
}
return ; }
 
 

HUD 2639 Bone Collector II的更多相关文章

  1. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. hdu 2639 Bone Collector II

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. hdu 2639 Bone Collector II(01背包 第K大价值)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. HDU 2639 Bone Collector II (dp)

    题目链接 Problem Description The title of this problem is familiar,isn't it?yeah,if you had took part in ...

  5. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  6. 杭电 2639 Bone Collector II【01背包第k优解】

    解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解, 即为取的是f[v],f[ ...

  7. hdu 2639 Bone Collector II (01背包,求第k优解)

    这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...

  8. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  9. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

随机推荐

  1. flask(十)使用alembic,进行数据库结构管理,升级,加表,加项

    1.安装扩展,在虚拟环境中安装 alembic,不懂可以去看pycharm的系列文章. 2.初始化, 使用 Alembic 前需要通过 alembic init 命令创建一个 alembic 项目,该 ...

  2. 栈(stack),C++模板实现

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  3. 201621123010《Java程序设计》第9周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1. List中指定元素的删除(题集题目) 1.1 实验总结.并回答:列举至 ...

  4. 《头文字D》热门同人插画欣赏

    <头文字D>(INITIAL D)是一部以山道飙车为题材的日本青年漫画,以及以漫画改编的动画系列(包含电视版.OVA.与电影版).漫画作者为重野秀一(しげの秀一),自1995 年起开始在讲 ...

  5. php require include 区别

    php提供了两种包含外部文件的方法:include()和require().include()语句是一个常规的php函数:而require() 是一种特殊的语言结构,它的使用受到一些限制.对这两者来说 ...

  6. SWIFT Tuple Pattern及Struct Pattern

    定义一个Tuple let color = (1.0,1.0,1.0,1.0) switch color{ case (0.0,0.5...1.0,let blue,_): //匹配第一个值为0.0第 ...

  7. Vue.js中用webpack合并打包多个组件并实现按需加载

    对于现在前端插件的频繁更新,所以多多少少要对组件化有点了解,下面这篇文章主要给大家介绍了在Vue.js中用webpack合并打包多个组件并实现按需加载的相关资料,需要的朋友可以参考下.   前言 随着 ...

  8. 原生js实现数据的双向绑定

    原生js实现数据的双向绑定 需要了解的属性是原色js的Object.definePrototype(obj,pop,descript); obj:被构造的对象 pop:被构造的对象的属性,创建对象或修 ...

  9. Unity3D插件-自制小插件、简化代码便于使用(新手至高手进阶必经之路)

    Unity3D插件-简化代码.封装功能 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) 1 FindT() ...

  10. int? 竟然真的可以是 null!.NET/C# 确定可空值类型 Nullable 实例的真实类型

    使用 Nullable<T> 我们可以为原本不可能为 null 的值类型像引用类型那样提供一个 null 值.不过注意:Nullable<T> 本身也是个 struct,是个值 ...