Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5463    Accepted Submission(s):
2880

Problem Description
The title of this problem is familiar,isn't it?yeah,if
you had took part in the "Rookie Cup" competition,you must have seem this
title.If you haven't seen it before,it doesn't matter,I will give you a
link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today
we are not desiring the maximum value of bones,but the K-th maximum value of the
bones.NOTICE that,we considerate two ways that get the same value of bones are
the same.That means,it will be a strictly decreasing sequence from the 1st
maximum , 2nd maximum .. to the K-th maximum.

If the total number of
different values is less than K,just ouput 0.

 
Input
The first line contain a integer T , the number of
cases.
Followed by T cases , each case three lines , the first line contain
two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the
number of bones and the volume of his bag and the K we need. And the second line
contain N integers representing the value of each bone. The third line contain N
integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of
the total value (this number will be less than 231).
 
Sample Input
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
Sample Output
12 2 0
 
 
题目的意思就是求01背包的第k优解,则自然想到(我感觉一点都不自然)多一维,dp【j】【k】;
状态dp【j】的前k个最优解,都是由dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]转移过来(没有证明过,但是对的),可以用优先队列来维护。
在求解dp[j][k]时,我们首先把dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]统统放进优先队列(会自己从大到小排),然后我们依次拿出k个,放进dp[j][1.....k]就ok了,但是要避免重复。
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
int main()
{
int T;
int dp[][];
cin >> T;
priority_queue<int>q;//默认从大到小排
while (T--)
{
memset(dp, , sizeof(dp));
int n, vv, kk;
cin >> n >> vv >> kk;
int i, j, k;
int v[], w[];
for (i = ; i <= n; i++)
cin >> v[i];
for (i = ; i <= n; i++)
cin >> w[i];
for (i = ; i <= n; i++)
{
for (j = vv; j >= w[i]; j--)//01背包的循环
{
while (!q.empty()) q.pop();
for (k = ; k <= kk; k++)
{//dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]放进队列
q.push(dp[j][k]);
q.push(dp[j - w[i]][k] + v[i]);
}
k = ;
while ()
{
if (q.empty() || k == kk+) break;
if (k > && q.top() != dp[j][k-])
{//这一步避免重复, q.top() == dp[j][k-1]要排除
dp[j][k] = q.top(); k++;
}
else if (k == )
{
dp[j][k] = q.top(); k++;
}
q.pop();
}
}
}
cout << dp[vv][kk] << endl;
}
return ; }
 
 

HUD 2639 Bone Collector II的更多相关文章

  1. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. hdu 2639 Bone Collector II

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. hdu 2639 Bone Collector II(01背包 第K大价值)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. HDU 2639 Bone Collector II (dp)

    题目链接 Problem Description The title of this problem is familiar,isn't it?yeah,if you had took part in ...

  5. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  6. 杭电 2639 Bone Collector II【01背包第k优解】

    解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解, 即为取的是f[v],f[ ...

  7. hdu 2639 Bone Collector II (01背包,求第k优解)

    这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...

  8. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  9. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

随机推荐

  1. L1-003 个位数统计

    给定一个 k 位整数 N=d​(k−1​)*​10^(​k−1)​​+⋯+d​(1)*​​10^​1​​+d(​0)​​ (0≤d(​i)​​≤9, i=0,⋯,k−1, d​(k−1)​​>0 ...

  2. Python3 集合(set)(十五)

    集合(set)是一个无序不重复元素的序列. 它的主要作用如下: 去重,把一个列表变成集合,就自动去重了 关系测试,测试两组数据之前的交集.差集.并集等关系 set和dict类似,也是一组key的集合, ...

  3. spring核心容器

    容器:用来包装或装载物品的储存器 web服务器与jsp.servlet的关系: 从程序文件存放的位置 程序文件要放到web服务器上 从程序执行的方式  程序的从初始化到消亡都是web服务器管理的 从以 ...

  4. 福大软工1816 - 第八次作业(课堂实战)- 项目UML设计

    团队 学号 姓名 本次作业博客链接 031602428 苏路明(组长) https://www.cnblogs.com/Sulumer/p/9822854.html 031602401 陈瀚霖 htt ...

  5. settype和gettype

    settype — 设置变量的类型 <?php$foo = "5bar"; // string$bar = true;   // boolean settype($foo,  ...

  6. Kali Linux更新源以及设置中文

    在终端输入 gedit /etc/apt/sources.list 复制下列源替换原有的 #官方源 deb http://http.kali.org/kali sana main non-free c ...

  7. Balloons Colors

    题目大意:ACMer总觉得题目难度与气球的颜色有关,比如最简单的题目颜色是红色,而最难的题目是黑色的.为了让这个谣言被打破,决定添加一个约束: 气球从1到N编号 题目从1到N编号 接下来给出 N X ...

  8. idea_快捷键default&eclipse

    关键字: SpringMybatisplusRedisApplicationTests github关键字(springboot拦截器完整项目): implements WebMvcConfigure ...

  9. GIT与VCS

    GIT 是一个开源的分布式版本控制系统,可以有效.高速地处理从很小到非常大的项目版本管理. [Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制 ...

  10. MySQL Disk--磁盘相关参数

    /sys/block/sda/queue/nr_requests 磁盘队列长度.默认只有 128 个队列,可以提高到 512 个.会更加占用内存,但能更加多的合并读写操作,速度变慢,但能读写更加多的量 ...