Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5463    Accepted Submission(s):
2880

Problem Description
The title of this problem is familiar,isn't it?yeah,if
you had took part in the "Rookie Cup" competition,you must have seem this
title.If you haven't seen it before,it doesn't matter,I will give you a
link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today
we are not desiring the maximum value of bones,but the K-th maximum value of the
bones.NOTICE that,we considerate two ways that get the same value of bones are
the same.That means,it will be a strictly decreasing sequence from the 1st
maximum , 2nd maximum .. to the K-th maximum.

If the total number of
different values is less than K,just ouput 0.

 
Input
The first line contain a integer T , the number of
cases.
Followed by T cases , each case three lines , the first line contain
two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the
number of bones and the volume of his bag and the K we need. And the second line
contain N integers representing the value of each bone. The third line contain N
integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of
the total value (this number will be less than 231).
 
Sample Input
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
Sample Output
12 2 0
 
 
题目的意思就是求01背包的第k优解,则自然想到(我感觉一点都不自然)多一维,dp【j】【k】;
状态dp【j】的前k个最优解,都是由dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]转移过来(没有证明过,但是对的),可以用优先队列来维护。
在求解dp[j][k]时,我们首先把dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]统统放进优先队列(会自己从大到小排),然后我们依次拿出k个,放进dp[j][1.....k]就ok了,但是要避免重复。
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
int main()
{
int T;
int dp[][];
cin >> T;
priority_queue<int>q;//默认从大到小排
while (T--)
{
memset(dp, , sizeof(dp));
int n, vv, kk;
cin >> n >> vv >> kk;
int i, j, k;
int v[], w[];
for (i = ; i <= n; i++)
cin >> v[i];
for (i = ; i <= n; i++)
cin >> w[i];
for (i = ; i <= n; i++)
{
for (j = vv; j >= w[i]; j--)//01背包的循环
{
while (!q.empty()) q.pop();
for (k = ; k <= kk; k++)
{//dp[j][1....k]和dp[j-w[i]][1.....k]+v[i]放进队列
q.push(dp[j][k]);
q.push(dp[j - w[i]][k] + v[i]);
}
k = ;
while ()
{
if (q.empty() || k == kk+) break;
if (k > && q.top() != dp[j][k-])
{//这一步避免重复, q.top() == dp[j][k-1]要排除
dp[j][k] = q.top(); k++;
}
else if (k == )
{
dp[j][k] = q.top(); k++;
}
q.pop();
}
}
}
cout << dp[vv][kk] << endl;
}
return ; }
 
 

HUD 2639 Bone Collector II的更多相关文章

  1. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. hdu 2639 Bone Collector II

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. hdu 2639 Bone Collector II(01背包 第K大价值)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. HDU 2639 Bone Collector II (dp)

    题目链接 Problem Description The title of this problem is familiar,isn't it?yeah,if you had took part in ...

  5. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  6. 杭电 2639 Bone Collector II【01背包第k优解】

    解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解, 即为取的是f[v],f[ ...

  7. hdu 2639 Bone Collector II (01背包,求第k优解)

    这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...

  8. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  9. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

随机推荐

  1. ORA-01034:Oracle not available

    ORA-01034:Oracle not available 问题描述:ora-01034常与ora-27101同时出现,都是在登录数据库的时候报该错误 错误原因:出现ORA-01034和ORA-27 ...

  2. 玩转X-CTR100 l STM32F4 l CAN通信

    我造轮子,你造车,创客一起造起来!塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ] X-CTR100控制器STM32F4处理器内置CAN ...

  3. MyEclipse移动开发教程:设置所需配置的iOS应用(一)

    MyEclipse个人授权 折扣低至冰点!立即开抢>> [MyEclipse最新版下载] 一.iOS应用程序配置要求 这个进程需要四个需求数据文件: 证书签名请求(CSR)文件 证书签名请 ...

  4. 4K电视与4K显示器的选择

    目前主流的电脑显示器分辨率是1920x1080,也就是常说的FHD标准,不过在智能手机都开始朝2560x1440前进了,PC显示器显然还需要更进一步的强化,下一代的标准就是4K分辨率,也就是Utlra ...

  5. Linux tomcat自动启动

    1.编辑/etc/rc.d/rc.local 添加环境变量 例如: JAVA_HOME=/usr/local/java/JRE_HOME=/usr/local/java/jreCLASS_PATH=. ...

  6. 设置MaskedTextBox控件的格式,掩码方式检验输入方式

    #region 设置MaskedTextBox控件的格式,掩码方式检验输入方式 /// <summary> /// 将MaskedTextBox控件的格式设为yyyy-mm-dd格式. / ...

  7. 隔行扫瞄/逐行扫瞄的介绍(Interlaced / Progressive)

    隔行扫瞄/逐行扫瞄的介绍(Interlaced / Progressive)   本篇不是着重在理论说明, 而是实际验証结果的分享, 所以只简略解释何谓交错与非交错, 请参考如后. 交错扫瞄(隔行扫瞄 ...

  8. OC基础:Date 分类: ios学习 OC 2015-06-22 19:16 158人阅读 评论(0) 收藏

    NSDate  日期类,继承自NSObject,代表一个时间点 NSDate *date=[NSDate date]; NSLog(@"%@",date);   //格林尼治时间, ...

  9. day02 大型互联网架构演变历程笔记 和nigix和keepalived

    PS:1.单个进程内,有多个线程,可以共享进程的内存空间2. 进程和进程之间通信比较麻烦, 会涉及 序列化和反序列化 PS :以一个交易网站看网站是如何变大的,网站的发展!!!! PS:随着请求的增加 ...

  10. gitlab操作

    一.初始设置 在某一个具体的project下: 1.gitlab中删除一个工程Setting-->General-->Advanced settings-->RemoveProjec ...