【CF886E】Maximum Element

题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法:

1.逐个遍历每个元素,如果这个元素比当前记录的最大值大,则令最大值等于当前元素,并令cnt=0
2.如果这个元素没有当前元素大,则cnt++。
3.如果cnt=k,则返回当前最大值

现在小P想知道有多少种序列在使用他的方法时会得到错误的答案。为了简化问题,我们假定原序列是一个1-n的排列。即我们要求的是:给定n和k,有多少个1-n的排列,在使用上述算法时,会得到错误的答案。

n,k<=10^6

题解:好难的DP题。

令f[n]表示1-n的排列中,$a_n=n$且能得到错误答案的方案数。显然当n<=K时f[n]都是0。

考虑枚举n-1的出现位置,如果n-1的出现位置在[1,n-k-1]中,那么这样的排列一定是错误的。这样的方案数是(n-2)!*(n-k-1)。

如果n-1在[n-k,n-1]中,那么如果答案是错误的,最大值只能是前n-2个数中的一个。设n-1的位置是j,那么我们将n-1和它前面的数看成一个新的序列,那么这个序列错误的方案数就是f[j]。又由于前面的j个数其实可以在n-2里随便取,所以方案数其实是$f[j]\frac {(n-2)!} {(j-1)!}$。

所以DP方程:$​f[n]=(n-2)!(n-k-1)+\sum\limits_{j=n-k}^{n-1}f[j]\frac{(n-2)!}{(j-1)!}$

用前缀和维护$\frac{f[j]}{(j-1)!}$即可。

答案是什么呢?仿照上面的推导过程可以知道$ans=\sum\limits_{i=k+1}^nf[i]\frac{(n-1)!}{(i-1)!}$。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn=1000010;
const ll P=1000000007;
int n,m;
ll jc[maxn],ine[maxn],jcc[maxn],f[maxn],s[maxn];
int main()
{
scanf("%d%d",&n,&m);
int i;
ine[0]=ine[1]=jc[0]=jc[1]=jcc[0]=jcc[1]=1;
for(i=2;i<=n;i++) jc[i]=jc[i-1]*i%P,ine[i]=P-(P/i)*ine[P%i]%P,jcc[i]=jcc[i-1]*ine[i]%P;
for(i=m+2;i<=n;i++) f[i]=(i-m-1+s[i-1]-s[i-m-1]+P)*jc[i-2]%P,s[i]=(s[i-1]+f[i]*jcc[i-1])%P;
printf("%I64d",s[n]*jc[n-1]%P);
return 0;
}

【CF886E】Maximum Element DP的更多相关文章

  1. 【CF886E】Maximum Element

    题目 考虑正难则反,答案即为\(n!-\text{返回值为n的排列数}\) 一个排列的返回值为\(n\),当且仅当在\(n\)出现之前没有一个数后面有连续\(k\)个小于它的数 设\(f_i\)表示\ ...

  2. 【CF888E】Maximum Subsequence(meet in the middle)

    [CF888E]Maximum Subsequence(meet in the middle) 题面 CF 洛谷 题解 把所有数分一下,然后\(meet\ in\ the\ middle\)做就好了. ...

  3. 【CF888E】Maximum Subsequence 折半搜索

    [CF888E]Maximum Subsequence 题意:给你一个序列{ai},让你从中选出一个子序列,使得序列和%m最大. n<=35,m<=10^9 题解:不小心瞟了一眼tag就一 ...

  4. 【题解】POJ1934 Trip (DP+记录方案)

    [题解]POJ1934 Trip (DP+记录方案) 题意: 传送门 刚开始我是这么设状态的(谁叫我DP没学好) \(dp(i,j)\)表示钦定选择\(i\)和\(j\)的LCS,然而你会发现这样钦定 ...

  5. 【题解】剪纸条(dp)

    [题解]剪纸条(dp) HRBUST - 1828 网上搜不到题解?那我就来写一篇吧哈哈哈 最优化问题先考虑\(dp\),设\(dp(i)\)表示将前\(i\)个字符(包括\(i\))分割成不相交的回 ...

  6. 【题解】地精部落(DP)

    [题解]地精部落(DP) 设\(f_i\)表示强制第一个是谷的合法方案数 转移枚举一个排列的最大值在哪里,就把序列分成了互不相干的两个部分,把其中\(i-1\choose j-1\)的数字分配给前面部 ...

  7. 【BZOJ2213】[Poi2011]Difference DP

    [BZOJ2213][Poi2011]Difference Description A word consisting of lower-case letters of the English alp ...

  8. 【BZOJ-1068】压缩 区间DP

    1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1001  Solved: 615[Submit][Status][ ...

  9. 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 3396  Solved: 1434[Submit][Sta ...

随机推荐

  1. 安卓开发笔记——ListView加载性能优化ViewHolder

    在前不久做安卓项目的时候,其中有个功能是爬取某网站上的新闻信息,用ListView展示,虽然做了分页,但还是觉得达不到理想流畅效果. 上网查阅了些资料,发现一些挺不错的总结,这里记录下,便于复习. 当 ...

  2. 谁应该在CCB(变更控制委员会)中?

    In software development, a Change Control Board (CCB) or Software Change Control Board (SCCB) is a c ...

  3. workerman定时器使用 php定时任务

    add int \Workerman\Lib\Timer::add(float $time_interval, callable $callback [,$args = array(), bool $ ...

  4. mysql中,创建包含json数据类型的表?创建json表时候的注意事项?查询json字段中某个key的值?

    需求描述: 在mysql数据库中,创建包含json数据类型的表.记录下,在创建的过程中,需要注意的问题. 操作过程: 1.通过以下的语句,创建包含json数据类型的表 mysql> create ...

  5. python怎么写可读性好的面向过程的长篇代码?

    最近接受老代码,mmp的,说是重新运行运行起来,那还不如重写呢,因为有很多毛病,不能直接运行,pep8就不用妄想奢望了,还有包括语法错误问题和内存严重泄露的问题(运行几分钟后python.exe进程达 ...

  6. iOS去掉icon的(自带磨光效果)gloss effects

    只需两步,第一步:在项目的plist文件,最上层add row ,内容 icon already includes gloss effects   YES. 第二步在 icon files 字段里添加 ...

  7. Android输出日志到电脑磁盘

    使用Eclipse查看Log有时候挺恶心的,有些Log ADB会自动的清除,所有有时候导致抓不到有效的Log,把Log保存到文件,然后通过文本查看器查看,感觉好Happy,下面就是脚本文件: adb ...

  8. 8 -- 深入使用Spring -- 3...1 Resource实现类InputStreamResource、ByteArrayResource

    8.3.1 Resource实现类------InputStreamResource:访问输入流资源的实现类.ByteArrayResource:访问字节数组资源的实现类. 5. 访问字节数组资源 ⊙ ...

  9. Perl socket编程

    In this article, let us discuss how to write Perl socket programming using the inbuilt socket module ...

  10. SaltStack 使用 Jinja2 模板

    Jinja2 是基于 python 的一个模板引擎,如下,使用 Jinja2 实现根据不同的操作系统分发不同的文件: [root@localhost ~]$ cat /srv/salt/test.sl ...