4305: 数列的GCD

Description

给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N)。 
现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., b[N],满足: 
(1)1<=b[i]<=M(1<=i<=N); 
(2)gcd(b[1], b[2], ..., b[N])=d; 
(3)恰好有K个位置i使得a[i]<>b[i](1<=i<=N) 
注:gcd(x1,x2,...,xn)为x1, x2, ..., xn的最大公约数。 
输出答案对1,000,000,007取模的值。 

Input

第一行包含3个整数,N,M,K。 
第二行包含N个整数:a[1], a[2], ..., a[N]。 

Output

输出M个整数到一行,第i个整数为当d=i时满足条件的不同数列{b[n]}的数目mod 1,000,000,007的值。 

Sample Input

3 3 3
3 3 3

Sample Output

7 1 0

HINT

当d=1,{b[n]}可以为:(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)。 
当d=2,{b[n]}可以为:(2, 2, 2)。 
当d=3,因为{b[n]}必须要有k个数与{a[n]}不同,所以{b[n]}不能为(3, 3, 3),满足条件的一个都没有。 
对于100%的数据,1<=N,M<=300000, 1<=K<=N, 1<=a[i]<=M。 

Source

 
 
【分析】
  
  smg,怎么说是容斥的。。。
 
  
 
  【其实好像不是。。很难??
  搞那么久我竟然for了一遍求cnt,然后就n^2极慢。。
  【均摊log看过很多次,懂得。。。
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 1000000007
#define Maxn 300010
#define LL long long int a[Maxn];
LL p[Maxn],ans[Maxn]; LL qpow(LL a,int b)
{
LL ans=;
while(b)
{
if(b&) ans=(ans*a)%Mod;
a=(a*a)%Mod;
b>>=;
}
return ans;
} LL get_c(int m,int n)
{
LL as=p[n];
as=as*qpow(p[m],Mod-)%Mod;
as=as*qpow(p[n-m],Mod-)%Mod;
return as;
} int cnt[Maxn],cc[Maxn]; int main()
{
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
k=n-k;
memset(cnt,,sizeof(cnt));
memset(cc,,sizeof(cc));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
cc[a[i]]++;
}
for(int i=m;i>=;i--)
{
for(int j=i;j<=m;j+=i) cnt[i]+=cc[j];
}
p[]=;
for(LL i=;i<=n;i++) p[i]=(p[i-]*i)%Mod;
for(int i=m;i>=;i--)
{
if(cnt[i]<k) ans[i]=;
else
{
ans[i]=get_c(k,cnt[i])*qpow(m/i-,cnt[i]-k)%Mod*qpow(m/i,n-cnt[i])%Mod;
for(int j=;j<=m/i;j++) ans[i]=(ans[i]+Mod-ans[i*j])%Mod;
}
}
for(int i=;i<m;i++) printf("%lld ",ans[i]);
printf("%lld\n",ans[m]);
// printf("\n");
return ;
}

2017-03-14 22:14:32

【BZOJ 4305】 4305: 数列的GCD (数论)的更多相关文章

  1. BZOJ 4305: 数列的GCD( 数论 )

    对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...

  2. bzoj 4305 数列的GCD

    LINK:数列的GCD 题意: 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], ...

  3. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  4. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  5. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  6. BZOJ 2820: YY的GCD | 数论

    题目: 题解: http://hzwer.com/6142.html #include<cstdio> #include<algorithm> #define N 100000 ...

  7. 【BZOJ】2820: YY的GCD(莫比乌斯)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2820 此题非常神! 下文中均默认n<m 首先根据bzoj1101的推理,我们易得对于一个数d使 ...

  8. 【BZOJ】【2818】Gcd

    欧拉函数/莫比乌斯函数 嗯……跟2190很像的一道题,在上道题的基础上我们很容易就想到先求出gcd(x,y)==1的组,然后再让x*=prime[i],y*=prime[i]这样它们的最大公约数就是p ...

  9. 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)

    YY的GCD   Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

随机推荐

  1. 【NOI2017】游戏 2-sat算法

    [题目]LibreOJ [题意]n场游戏,有三种车ABC,给定长度为n的字符串,'a'表示不能选A,'b''c'同理,'x'表示不限,至多d个'x'.有m个限制(i,hi,j,hj)表示如果第i场选择 ...

  2. 【CodeForces】901 C. Bipartite Segments

    [题目]C. Bipartite Segments [题意]给定n个点m条边的无向连通图,保证不存在偶数长度的简单环.每次询问区间[l,r]中包含多少子区间[x,y]满足只保留[x,y]之间的点和边构 ...

  3. 【vijos】P1190 繁忙的都市

    [算法]最小生成树 #include<cstdio> #include<algorithm> using namespace std; ; ]; int fa[maxn],he ...

  4. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  5. input只读属性readonly和disabled的区别

    主要区别: 参考: http://bbs.html5cn.org/forum.php?mod=viewthread&tid=84113&highlight=input http://b ...

  6. 【文件上传】jquery之ajaxfileupload异步上传插件

    来自:http://www.blogjava.net/sxyx2008/archive/2010/11/02/336826.html 由于项目需求,在处理文件上传时需要使用到文件的异步上传.这里使用J ...

  7. html5手机Web单页应用实践--起点移动阅读

    一开始以hybrid形式做了一个android的小说阅读客户端,叫4G阅读.而后由于业务需求,要迅速实现纯手机html5 版的,所以就直接在原先客户端内内嵌的网页进行改版,快速实现以后在优化的过程中发 ...

  8. spark作业提交参数设置(转)

    来源:https://www.cnblogs.com/arachis/p/spark_parameters.html 摘要 1.num-executors 2.executor-memory 3.ex ...

  9. You can fail at what you don't want, so you might as well take a chance on doing what you love.

    You can fail at what you don't want, so you might as well take a chance on doing what you love. 做不想做 ...

  10. 【读书笔记::深入理解linux内核】内存寻址

    我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系. 这句话瞬间让我惊呆了,根据我的CPU的知识,开 ...