MG loves string

 Accepts: 30
 Submissions: 67
 Time Limit: 2000/1000 MS (Java/Others)
 Memory Limit: 262144/262144 K (Java/Others)
问题描述
MG是一个很忙碌的男孩子。今天他沉迷于这样一个问题:

对于一个长度为N的由小写英文字母构成的随机字符串,当它进行一次变换,所有字符i都会变成a[i]。

MG规定所有a[i]构成了26个字母组成的排列。

MG现在需要知道这个随机串变换到自身的期望变换次数。请你输出期望答案乘上26^n以后模 1000000007的结果。

MG认为这件事非常容易,不屑于用计算机解决,于是运用他高超的人类智慧开始进行计算。作为一名旁观者,你也想挑战MG智慧,请你写个程序,计算答案。
输入描述
第一行一个整数T,代表数据组数(1 <=T<=10)。

接下来,对于每组数据——

第一行一个整数N,表示给定的随机串长度(1<=N<=1000000000)。

第二行26个字母,表示a_i​​序列
输出描述
对于每一组数据,输出一行。

显然,这个期望是一个实数。请你输出它乘上26^N​​以后模 1000000007 的结果
输入样例
2
2
abcdefghijklmnpqrstuvwxyzo
1
abcdefghijklmnopqrstuvwxyz
输出样例
5956
26
 

【分析】

  感觉BC的题挺好的啊【每次都能学到东西。。

  首先,知道,这是个带LCM的期望。就是看随机串分别在长度为几的循环节里面,然后LCM。

  然后,不同长度的循环节不会超过6个,1+2+3+4+5+6=21。

  就是根据输入的那个串,只会有6种长度的循环节,所以你可以枚举真正的随机串涵盖的循环节有哪几个,枚举是2^6。

  然后就是把n个字符放到那些循环节的字母集合中去,但是要保证每个循环节都一定有一个字母覆盖,问它的方案数。

  其实这是经典的容斥原理,就是n个东西分到m个集合,让每个集合都至少有一个东西。

  这里我们枚举子集就可以用容斥原理计算出来了【注意容斥,你要减掉的是没有涵盖某一个集合的,加上没有涵盖两个集合的。。。】

  枚举子集是3^n(用二项式定理易证)

  这个可以预处理的。

  所以是$O(2^6*\log(n)+3^6)$

官方题解:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 1000000007
#define LL long long int u[],v[],pp[],n;
LL sm[];
int h[],ss[],p[];
char s[];
bool vis[]; LL qpow(LL x,int b)
{
x%=Mod;
LL ans=;
while(b)
{
if(b&) ans=(ans*x)%Mod;
x=(x*x)%Mod;
b>>=;
}
return ans;
} void init()
{
memset(vis,,sizeof(vis));
memset(p,,sizeof(p));
memset(h,,sizeof(h));
memset(ss,,sizeof(ss));
scanf("%d",&n);
scanf("%s",s+);
for(int i=;i<=;i++) u[i]=s[i]-'a'+;
for(int i=;i<=;i++) if(!vis[i])
{
vis[i]=;
int x=i,cnt=;
while(u[x]!=i) x=u[x],cnt++,vis[x]=;
p[cnt]++;
}
v[]=;
for(int i=;i<=;i++) if(p[i]) v[++v[]]=i,pp[v[]]=p[i];
for(int i=;i<(<<v[]);i++)
for(int j=;j<=;j++) if(i&(<<j-)) ss[i]+=v[j]*pp[j],h[i]++;
for(int i=;i<(<<v[]);i++) sm[i]=qpow(ss[i],n);sm[]=;
int i;
// for(i=0;i<(1<<v[0]);i++)
for(i=(<<v[])-;i>=;i--)
for(int j=i;j;j=(j-)&i)
{
if(i==j) continue;
if((h[i]-h[j])%==) sm[i]+=sm[j];
else sm[i]-=sm[j];
sm[i]=(sm[i]%Mod+Mod)%Mod;
}
} LL gcd(LL a,LL b)
{
if(b==) return a;
return gcd(b,a%b);
} LL ans; void ffind(int x,int y,LL nw)
{
if(x==v[]+)
{
ans=(ans+sm[y]*nw)%Mod;
return;
}
ffind(x+,y,nw);
ffind(x+,y|(<<x-),nw*(LL)v[x]/gcd(nw,v[x]));
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
init();
ans=;ffind(,,);
printf("%lld\n",ans);
}
return ;
}

2017-04-02 10:41:18

【HDU 6021】 MG loves string (枚举+容斥原理)的更多相关文章

  1. hdu 6021 MG loves string (一道容斥原理神题)(转)

    MG loves string    Accepts: 30    Submissions: 67  Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  2. hdu 6021 MG loves string

    MG loves string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others ...

  3. ●HDU 6021 MG loves string

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=6021 题解: 题意:对于一个长度为 N的由小写英文字母构成的随机字符串,当它进行一次变换,所有字符 i ...

  4. MG loves string

    MG loves string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others ...

  5. hdu 6020 MG loves apple 恶心模拟

    题目链接:点击传送 MG loves apple Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Ja ...

  6. hdu6021[BestCoder #93] MG loves string

    这场BC实在是有趣啊,T2是个没有什么算法但是细节坑的贪心+分类讨论乱搞,T3反而码起来很顺. 然后出现了T2过的人没有T3多的现象(T2:20人,T3:30人),而且T2的AC率是惨烈的不到3% ( ...

  7. 【HDU 6020】 MG loves apple (乱搞?)

    MG loves apple  Accepts: 20  Submissions: 693  Time Limit: 3000/1500 MS (Java/Others)  Memory Limit: ...

  8. hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)

    CA Loves GCD  Accepts: 64  Submissions: 535  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: 2 ...

  9. best corder MG loves gold

    MG loves gold  Accepts: 451  Submissions: 1382  Time Limit: 3000/1500 MS (Java/Others)  Memory Limit ...

随机推荐

  1. 51nod1056 最长等差数列 V2

    基准时间限制:8 秒 空间限制:131072 KB 分值: 1280  N个不同的正整数,从中选出一些数组成等差数列.   例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括 ...

  2. 20155117王震宇 实验一《Java开发环境的熟悉》实验报告

    (一)使用JDK编译.运行简单的java程序 命令创建实验目录 输入mkdir 2051117 创建以自己学号命名的文件夹,通过cd命令移动到指定文件夹,输入mkdir exp1创建实验文件夹. 打开 ...

  3. String类的一些常用操作方法

    package com.liveyc.framework.util; import java.io.UnsupportedEncodingException; import java.net.URLD ...

  4. 【leetcode 简单】第十八题 爬楼梯

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...

  5. 【译】第五篇 SQL Server代理理解代理错误日志

    本篇文章是SQL Server代理系列的第五篇,详细内容请参考原文. 正如这一系列的前几篇所述,SQL Server代理作业是由一系列的作业步骤组成,每个步骤由一个独立的类型去执行.在第四篇中我们看到 ...

  6. VScode格式化ESlint

    打开 文件-首选项- 设置 mac可以按快捷键(command和,) 然后在右上角的省略号选择open setting json { // vscode默认启用了根据文件类型自动设置tabsize的选 ...

  7. PEB及LDR链

    PEB地址的取得在NT内核系统中fs寄存器指向TEB结构,TEB+0x30处指向PEB结构,PEB+0x0c处指向PEB_LDR_DATA结构,PEB_LDR_DATA+0x1c处存放一些指向动态链接 ...

  8. Python 中的闭包与装饰器

    闭包(closure)是函数式编程的重要的语法结构.闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性. 如果在一个内嵌函数里,对在外部函数内(但不是在全局作用域)的变量进行引用,那么内嵌函数 ...

  9. PHP发送邮件:如何自定义reply-to头部以及附件

    虽然有现成的类库(如PEAR)可以很方便地实现附件添加和发送,但是对于一些小站点(服务器硬件.网站规模都不理想),安装PEAR可能会带来不必要的负担,降低WEB程序运行效率. 通过对邮件格式的认识,我 ...

  10. ASP.NET Core 2.0 MVC 发布部署--------- CentOS7 X64 具体操作

    .Net Core 部署到 CentOS7 64 位系统中的步骤 1.安装工具 1.apache 2..Net Core(dotnet-sdk-2.0) 3.Supervisor(进程管理工具,目的是 ...