leetcode 53 最大子序列之和(动态规划)

思路:nums为给定的数组,动态规划:
设 一维数组:dp[i] 表示 以第i个元素为结尾的一段最大子序和。
1)若dp[i-1]小于0,则dp[i]加上前面的任意长度的序列和都会小于nums[i],则 dp[i] = nums[i];
2) 若dp[i-1] 不小于0, 则 dp[i] = dp[i-1] + nums[i];
边界条件:dp[0] = nums[0] (nums数组的第一个元素的最大长度就是本身)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int len = nums.size();
if(len == ) return ;
if(len == ) return nums[];
vector<int> dp(len, ); //dp[i]: 以第i个元素为结尾的最大子序列和
dp[] = nums[];
int max_num = dp[];
for(int i=; i<len; i++){
if(dp[i-] > )
dp[i] = dp[i-] +nums[i];
else
dp[i] = nums[i];
max_num = max(max_num, dp[i]);
}
return max_num;
}
};
最长公共子序列:


https://www.nowcoder.com/courses/6/8/3
#include<bits/stdc++.h>
using namespace std;
int longestsub(string a, string b){
int a_s = a.size(), b_s = b.size();
int N = (a_s >= b_s)? a_s: b_s;
int dp[N+][N+];
memset(dp, , sizeof(dp));
if(a_s<= || b_s<=)
return ;
for(int i=; i<=a_s; i++){
for(int j=; j<=b_s; j++){
if(a[i-]==b[j-])
dp[i][j] = dp[i-][j-]+;
else
dp[i][j] = max(dp[i-][j], dp[i][j-]);
//cout<<dp[i][j]<<" ";
}
//cout<<endl;
}
return dp[a_s][b_s];
}
int main(){
string a, b;
while(cin>>a>>b){
int res = longestsub(a,b);
cout<<res<<endl;
}
return ;
}
568 Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.
Rules and restrictions:
- You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
- The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
- You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
- For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.
You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.
Example 1:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.
Example 2:
Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.
Example 3:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.
Note:
- N and K are positive integers, which are in the range of [1, 100].
- In the matrix flights, all the values are integers in the range of [0, 1].
- In the matrix days, all the values are integers in the range [0, 7].
- You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
- If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
- We don't consider the impact of flight hours towards the calculation of vacation days.
题目大意:
- N和K是正整数,范围[1, 100]
- 矩阵flights的元素范围[0, 1]
- 矩阵days的元素范围[0, 7]
思路:
解题思路:
dp[w][c]表示第w周选择留在第c个城市可以获得的最大总收益 初始令dp[w][0] = 0, dp[w][1 .. c - 1] = -1 当dp[w][c] < 0时,表示第c个城市在第w周时还不可达。
for w in ( .. K)
for sc in ( .. N)
if dp[w][sc] < :
continue
for tc in ( .. N)
if sc == tc or flights[sc][tc] == :
dp[w + ][tc] = max(dp[w + ][tc], dp[w][sc] + days[tc][w])
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int N = flights.size();
int K = days[].size();
vector<vector<int>> dp(K, vector<int>(N, ));
vector<vector<bool>> reach(K, vector<bool>(N, false));
// first week, no guesses for the previous city
for (int city = ; city < N; ++city)
if (city == || flights[][city]) {
dp[][city] = days[city][]; //第0周留在city可获得的最大收益==在city逗留的最大天数
reach[][city] = true; //第0周可达city
}
// topological order (week)
for (int week = ; week < K; ++week) {
// current city
for (int city = ; city < N; ++city) {
// Subproblem: guess a previous city
for (int prevCity = ; prevCity < N; ++prevCity) {
if (reach[week - ][prevCity] && (city == prevCity || flights[prevCity][city])) {
dp[week][city] = max(dp[week][city], dp[week - ][prevCity] + days[city][week]);
reach[week][city] = true;
}
}
}
}
int res = ;
for (int city = ; city < N; ++city)
res = max(res, dp[K - ][city]);
return res;
}
};
leetcode 53 最大子序列之和(动态规划)的更多相关文章
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- hdu1003 Max Sum【最大连续子序列之和】
题目链接:https://vjudge.net/problem/HDU-1003 题目大意:给出一段序列,求出最大连续子序列之和,以及给出这段子序列的起点和终点. 解题思路:最长连续子序列之和问题其实 ...
- [LeetCode] 4Sum 四数之和
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
- leetcode:House Robber(动态规划dp1)
You are a professional robber planning to rob houses along a street. Each house has a certain amount ...
- CJOJ 2044 【一本通】最长公共子序列(动态规划)
CJOJ 2044 [一本通]最长公共子序列(动态规划) Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X,则另一序列Z是X的子序列是指存在一个 ...
- C#版 - Leetcode 633. 平方数之和 - 题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...
- 【LOJ#6074】子序列(动态规划)
[LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...
- 【BZOJ2423】最长公共子序列(动态规划)
[BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...
随机推荐
- hdu 4068 I-number
#include<stdio.h> #include<string.h> ]; int al; int mysum() //求各位和 { ; al=strlen(a); ; i ...
- position与offset的区别
.offset()是相对于文档(document)的当前位置,.position()是相对于父级元素的位移,一个元素可以嵌套多个position
- 3.3.5 高效读取:不变模式下的CopyOnWriteArrayList
源码分析:读写(get,add) 一:get 方法 private E get(Object[] a, int index) { return (E) a[index];}可以看到读取数据的时候 没有 ...
- MySQL闪退
把配置文档的如图位置打开
- static在C和C++里各代表什么含义
转自:http://blog.csdn.net/wanglongfei_hust/article/details/10011503 static关键字有三种使用方式,其中前两种只指在C语言中使用,第三 ...
- SpringMVC源码解读 - RequestMapping注解实现解读 - RequestCondition体系
一般我们开发时,使用最多的还是@RequestMapping注解方式. @RequestMapping(value = "/", param = "role=guest& ...
- C++语言运算符的功能、优先级和结合性
优先级 运算符 名称或含义 使用形式 结合方向 说明 1 [] 数组下标 数组名[常量表达式] 左到右 () 圆括号 (表达式)/函数名(形参表) . 成员选择(对象) 对象.成员名 -& ...
- Android-原生对话框
package liudeli.ui.all; import android.app.Activity; import android.app.AlertDialog; import android. ...
- sonar资料
看过的sonar比较好的在线参考资料(自认为): 1.<使用 Sonar 进行代码质量管理>>,地址:http://www.ibm.com/developerworks/cn/jav ...
- 关于人脸识别引擎FaceRecognitionDotNet的实例
根据我上篇文章的分享,我提到了FaceRecognitionDotNet,它是python语言开发的一个项目face_recognition移植.结果真是有喜有忧,喜的是很多去关注了,进行了下载,我看 ...