leetcode 53 最大子序列之和(动态规划)

思路:nums为给定的数组,动态规划:
设 一维数组:dp[i] 表示 以第i个元素为结尾的一段最大子序和。
1)若dp[i-1]小于0,则dp[i]加上前面的任意长度的序列和都会小于nums[i],则 dp[i] = nums[i];
2) 若dp[i-1] 不小于0, 则 dp[i] = dp[i-1] + nums[i];
边界条件:dp[0] = nums[0] (nums数组的第一个元素的最大长度就是本身)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int len = nums.size();
if(len == ) return ;
if(len == ) return nums[];
vector<int> dp(len, ); //dp[i]: 以第i个元素为结尾的最大子序列和
dp[] = nums[];
int max_num = dp[];
for(int i=; i<len; i++){
if(dp[i-] > )
dp[i] = dp[i-] +nums[i];
else
dp[i] = nums[i];
max_num = max(max_num, dp[i]);
}
return max_num;
}
};
最长公共子序列:


https://www.nowcoder.com/courses/6/8/3
#include<bits/stdc++.h>
using namespace std;
int longestsub(string a, string b){
int a_s = a.size(), b_s = b.size();
int N = (a_s >= b_s)? a_s: b_s;
int dp[N+][N+];
memset(dp, , sizeof(dp));
if(a_s<= || b_s<=)
return ;
for(int i=; i<=a_s; i++){
for(int j=; j<=b_s; j++){
if(a[i-]==b[j-])
dp[i][j] = dp[i-][j-]+;
else
dp[i][j] = max(dp[i-][j], dp[i][j-]);
//cout<<dp[i][j]<<" ";
}
//cout<<endl;
}
return dp[a_s][b_s];
}
int main(){
string a, b;
while(cin>>a>>b){
int res = longestsub(a,b);
cout<<res<<endl;
}
return ;
}
568 Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.
Rules and restrictions:
- You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
- The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
- You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
- For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.
You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.
Example 1:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.
Example 2:
Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.
Example 3:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.
Note:
- N and K are positive integers, which are in the range of [1, 100].
- In the matrix flights, all the values are integers in the range of [0, 1].
- In the matrix days, all the values are integers in the range [0, 7].
- You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
- If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
- We don't consider the impact of flight hours towards the calculation of vacation days.
题目大意:
- N和K是正整数,范围[1, 100]
- 矩阵flights的元素范围[0, 1]
- 矩阵days的元素范围[0, 7]
思路:
解题思路:
dp[w][c]表示第w周选择留在第c个城市可以获得的最大总收益 初始令dp[w][0] = 0, dp[w][1 .. c - 1] = -1 当dp[w][c] < 0时,表示第c个城市在第w周时还不可达。
for w in ( .. K)
for sc in ( .. N)
if dp[w][sc] < :
continue
for tc in ( .. N)
if sc == tc or flights[sc][tc] == :
dp[w + ][tc] = max(dp[w + ][tc], dp[w][sc] + days[tc][w])
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int N = flights.size();
int K = days[].size();
vector<vector<int>> dp(K, vector<int>(N, ));
vector<vector<bool>> reach(K, vector<bool>(N, false));
// first week, no guesses for the previous city
for (int city = ; city < N; ++city)
if (city == || flights[][city]) {
dp[][city] = days[city][]; //第0周留在city可获得的最大收益==在city逗留的最大天数
reach[][city] = true; //第0周可达city
}
// topological order (week)
for (int week = ; week < K; ++week) {
// current city
for (int city = ; city < N; ++city) {
// Subproblem: guess a previous city
for (int prevCity = ; prevCity < N; ++prevCity) {
if (reach[week - ][prevCity] && (city == prevCity || flights[prevCity][city])) {
dp[week][city] = max(dp[week][city], dp[week - ][prevCity] + days[city][week]);
reach[week][city] = true;
}
}
}
}
int res = ;
for (int city = ; city < N; ++city)
res = max(res, dp[K - ][city]);
return res;
}
};
leetcode 53 最大子序列之和(动态规划)的更多相关文章
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- hdu1003 Max Sum【最大连续子序列之和】
题目链接:https://vjudge.net/problem/HDU-1003 题目大意:给出一段序列,求出最大连续子序列之和,以及给出这段子序列的起点和终点. 解题思路:最长连续子序列之和问题其实 ...
- [LeetCode] 4Sum 四数之和
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
- leetcode:House Robber(动态规划dp1)
You are a professional robber planning to rob houses along a street. Each house has a certain amount ...
- CJOJ 2044 【一本通】最长公共子序列(动态规划)
CJOJ 2044 [一本通]最长公共子序列(动态规划) Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X,则另一序列Z是X的子序列是指存在一个 ...
- C#版 - Leetcode 633. 平方数之和 - 题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...
- 【LOJ#6074】子序列(动态规划)
[LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...
- 【BZOJ2423】最长公共子序列(动态规划)
[BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...
随机推荐
- 阿里云WindowsServer2012安装IIS失败
本文地址:http://www.cnblogs.com/drfxiaoliuzi/p/6388417.html 首先,向微软官方论坛的大神致敬: https://social.technet.micr ...
- 使用python把图片存入数据库-乾颐堂
一般情况下我们是把图片存储在文件系统中,而只在数据库中存储文件路径的,但是有时候也会有特殊的需求:把图片二进制存入数据库. 今天我们采用的是python+mysql的方式 MYSQL 是支持把图片存入 ...
- 常用的 Python 调试工具,Python开发必读-乾颐堂
以下是我做调试或分析时用过的工具的一个概览.如果你知道有更好的工具,请在评论中留言,可以不用很完整的介绍. 日志 没错,就是日志.再多强调在你的应用里保留足量的日志的重要性也不为过.你应当对重要的内容 ...
- http post 方法传递参数的2种方式
1.StringEntity try{ HttpPost httpPost = new HttpPost(url); //param参数,可以为param="key1=value1&a ...
- 白盒测试实践--Day2
累计完成任务情况: 阶段内容 参与人 完成CheckStyle检查 小靳 完成代码评审会议纪要和结果报告 小熊.小梁及其他 完成白盒测试用例 小尹 学习静态代码审核,确定评审表,开评审会确定高危区代码 ...
- web测试——完结感言
1.在小组所有成员一人找出了博客园的2个小bug. 2.杨瑞丰与李建文完成了用户调研和定量评价. 3.张颖与汪鸿也完成了产品分析和与CSDN的横向比较. 4.胡俊辉一个人总结所有人的问题与结果,进行了 ...
- JavaWeb项目导入MyEclipse后变为JAVA项目项目【解决方法】
问题描述:之前有个项目是Java web的项目,但是后来我导入到我电脑里的myEclipse里后就变成了Java项目.查找了资料解决了,网上大部分都是说在eclipse里解决这个问题,在myEclip ...
- linux 不在sudoers文件中、普通用户获得sudo权限
现在要让jack用户获得sudo使用权 切换到超级用户root $su root 查看/etc/sudoers权限,可以看到当前权限为440 $ ls -all /etc/sudoers -r--r- ...
- C#和C++语言使用方面的区别
本人觉得C#是世界上最优美的语言,也可以说是一门傻瓜语言,入门成本低,上手快得到许多人的青睐,但是C#并没有在行业内得到大家的首肯,反倒是C/C++人才比较紧俏:本人在学习过程中将C#和C++语言使用 ...
- access函数使用
调用open函数时,是以有效用户而不是实际用户的身份去验证进程对要打开的文件的读写权限.但是有时候我们想知道的是实际用户而非有效用户对某一文件的权限,此时就要用到access函数. 函数原型:in ...