BZOJ3438:小M的作物 (最大闭合权图->最小割)
小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子
有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai的收益,在B中种植
可以获得bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益
,小M找到了规则中共有m种作物组合,第i个组合中的作物共同种在A中可以获得c1i的额外收益,共同总在B中可以
获得c2i的额外收益,所以,小M很快的算出了种植的最大收益,但是他想要考考你,你能回答他这个问题么?
Input
第一行包括一个整数n
第二行包括n个整数,表示ai第三行包括n个整数,表示bi第四行包括一个整数m接下来m行,
对于接下来的第i行:第一个整数ki,表示第i个作物组合中共有ki种作物,
接下来两个整数c1i,c2i,接下来ki个整数,表示该组合中的作物编号。输出格式
Output
只有一行,包括一个整数,表示最大收益 Sample Input Sample Output 样例解释A耕地种1,,B耕地种3,收益4+++=。
<=k< n<= , < m < = 保证所有数据及结果不超过2*^。
思路:orzpopoqqq。假定全部在A里,然后去找增广流。 如果很好地理解了用最大流求最大闭合权图的话,就不难想通。
最大闭合权图:原点与代价点连接,收益点与汇点连接; 收益和-最大流=最大净收益。 那么现在的基本代价或者收益是ai-bi,。然后破坏集合的代价是c1i,得到集合的收益是c2i。 差不多就酱紫。具体的请去看popoqqq的题解。
和BZOJ3894差不多,就不多说了:http://www.cnblogs.com/hua-dong/p/8655375.html
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const long long inf=;
int N,M,S,T,cnt=;
long long ans,maxflow,cap[maxn];
int Laxt[maxn],To[maxn],Next[maxn],vd[maxn],dis[maxn];
void add(int u,int v,long long c)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cap[cnt]=c;
}
long long sap(int u,long long flow)
{
if(flow==||u==T) return flow;
long long tmp,delta=;
for(int i=Laxt[u];i;i=Next[i]){
if(dis[u]==dis[To[i]]+&&cap[i]>){
tmp=sap(To[i],min(cap[i],flow-delta));
delta+=tmp;
cap[i]-=tmp;
cap[i^]+=tmp;
if(delta==flow||dis[S]>T+) return delta;
}
}
vd[dis[u]]--;
if(vd[dis[u]]==) dis[S]=T+;
vd[++dis[u]]++;
return delta;
}
int main()
{
int i,j,x,y,num; scanf("%d",&N);
S=; T=;
for(i=;i<=N;i++){
scanf("%d",&x); ans+=x;
add(S,i,x); add(i,S,);
}
for(i=;i<=N;i++){
scanf("%d",&x); ans+=x;
add(i,T,x); add(T,i,);
}
scanf("%d",&M);
for(i=;i<=M;i++){
scanf("%d",&num);
scanf("%d%d",&x,&y);
ans+=x+y;
add(S,N+i,x); add(N+i,S,);
add(N+M+i,T,y); add(T,N+M+i,);
for(j=;j<=num;j++){
scanf("%d",&x);
add(N+i,x,inf); add(x,N+i,);
add(x,N+M+i,inf); add(N+M+i,x,);
}
}
while(dis[S]<=T) maxflow+=sap(S,inf);
printf("%d\n",ans-maxflow);
return ;
}
BZOJ3438:小M的作物 (最大闭合权图->最小割)的更多相关文章
- bzoj3438: 小M的作物(那年花开最小割)
3438: 小M的作物 题目:传送门 题解: 最小割标准水题(做了几天的最小割之后表示是真的水) 为什么水:博主已经做过两道基本一样的题目了... 详情参考:bzoj3894 代码: #include ...
- P1361 小M的作物 【网络流】【最小割】
题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号). 现在,第i种作物种植在A中种植可 ...
- 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割
[题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...
- hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)
要选出一些点,这些点之间没有相邻边且要求权值之和最大,求这个权值 分析:二分图带权最大独立集. 用最大流最小割定理求解.其建图思路是:将所有格点编号,奇数视作X部,偶数视作Y部,建立源点S和汇点T, ...
- BZOJ3438 小M的作物(最小割)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...
- BZOJ3438小M的作物——最小割
题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可 ...
- BZOJ3438 小M的作物(和拓展)
题目链接:戳我 我们如果要选择一种种植情况的话,一定是其他的选择都不可行了.这种决策问题用最小割来处理最好不过. 建图方式--A为源点,B为汇点.然后将每个点分别向A,B连边,边权为种植它的价值.组合 ...
- CF1082G:G. Petya and Graph(裸的最大闭合权图)
Petya has a simple graph (that is, a graph without loops or multiple edges) consisting of n n vertic ...
- POJ 2987 Firing【最大权闭合图-最小割】
题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...
随机推荐
- ubuntu16.04 python3.5 opencv的安装与卸载(转载)
转载https://blog.csdn.net/qq_37541097/article/details/79045595 Ubuntu16.04 自带python2.7和python3.5两个版本,默 ...
- php入门(三)
PHP 面向对象: 在php5中 var就是public的别名. 变量 $this 代表自身的对象. PHP_EOL;为换行符 构造函数+析构函数 <?php class Site { /* 成 ...
- IDEA.环境
1.下载: https://www.jetbrains.com/idea/download/#section=windows 安装的版本是:Ultimate:ideaIU-2017.3.3.exe 2 ...
- php温习-变量,常量
1.变量 内存中用于临时存储数据的一个空间,空间有一个名字子,变量都是以$开头 预定义变量: $_GET $_POST $_REQUEST $_SEVER $_SEESION $_COO ...
- WebBrowser提交submit后界面不刷新的解决办法
一个Form里有一个WebBrowser和一个Button,在Button_Click里执行 htmlDocument=WebBrowser.Document得到当前document 当htmlDoc ...
- SSM框架WebSocket配置
1.StartFilter.java package cn.xydata.pharmacy.websocket; import java.io.IOException; import javax.se ...
- 互换CapsLock和Ctrl键
如果你没有HHKB键盘,完全可以利用系统自身的功能交换CapsLock和Ctrl键. macOS系统 在系统偏好设置里,点击“键盘”,在出现的画面点击右下角的“修饰键...”按钮,在这里可以配置这两个 ...
- ResultSet 结果集
转自:http://blog.csdn.net/z93971401/article/details/7469503 这篇文章并没有给出如何使用ResultSet的具体例子,只是从ResultSet的功 ...
- spring配置bean的生命周期
配置文件: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http:// ...
- Windows下查看占用端口程序
配置shadowsocks,发现本地1080端口被占用,当然更改没有占用的端口即可.当然还得查找下什么程序占用的.无奈,看了下115浏览器占用此端口,浏览器不能管啊,你懂得!!! Windows查找下 ...