小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子
有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai的收益,在B中种植
可以获得bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益
,小M找到了规则中共有m种作物组合,第i个组合中的作物共同种在A中可以获得c1i的额外收益,共同总在B中可以
获得c2i的额外收益,所以,小M很快的算出了种植的最大收益,但是他想要考考你,你能回答他这个问题么?
Input
第一行包括一个整数n
第二行包括n个整数,表示ai第三行包括n个整数,表示bi第四行包括一个整数m接下来m行,
对于接下来的第i行:第一个整数ki,表示第i个作物组合中共有ki种作物,
接下来两个整数c1i,c2i,接下来ki个整数,表示该组合中的作物编号。输出格式
Output
只有一行,包括一个整数,表示最大收益 Sample Input Sample Output 样例解释A耕地种1,,B耕地种3,收益4+++=。
<=k< n<= , < m < = 保证所有数据及结果不超过2*^。

思路:orzpopoqqq。假定全部在A里,然后去找增广流。  如果很好地理解了用最大流求最大闭合权图的话,就不难想通。

最大闭合权图:原点与代价点连接,收益点与汇点连接; 收益和-最大流=最大净收益。 那么现在的基本代价或者收益是ai-bi,。然后破坏集合的代价是c1i,得到集合的收益是c2i。 差不多就酱紫。具体的请去看popoqqq的题解。

和BZOJ3894差不多,就不多说了:http://www.cnblogs.com/hua-dong/p/8655375.html

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const long long inf=;
int N,M,S,T,cnt=;
long long ans,maxflow,cap[maxn];
int Laxt[maxn],To[maxn],Next[maxn],vd[maxn],dis[maxn];
void add(int u,int v,long long c)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cap[cnt]=c;
}
long long sap(int u,long long flow)
{
if(flow==||u==T) return flow;
long long tmp,delta=;
for(int i=Laxt[u];i;i=Next[i]){
if(dis[u]==dis[To[i]]+&&cap[i]>){
tmp=sap(To[i],min(cap[i],flow-delta));
delta+=tmp;
cap[i]-=tmp;
cap[i^]+=tmp;
if(delta==flow||dis[S]>T+) return delta;
}
}
vd[dis[u]]--;
if(vd[dis[u]]==) dis[S]=T+;
vd[++dis[u]]++;
return delta;
}
int main()
{
int i,j,x,y,num; scanf("%d",&N);
S=; T=;
for(i=;i<=N;i++){
scanf("%d",&x); ans+=x;
add(S,i,x); add(i,S,);
}
for(i=;i<=N;i++){
scanf("%d",&x); ans+=x;
add(i,T,x); add(T,i,);
}
scanf("%d",&M);
for(i=;i<=M;i++){
scanf("%d",&num);
scanf("%d%d",&x,&y);
ans+=x+y;
add(S,N+i,x); add(N+i,S,);
add(N+M+i,T,y); add(T,N+M+i,);
for(j=;j<=num;j++){
scanf("%d",&x);
add(N+i,x,inf); add(x,N+i,);
add(x,N+M+i,inf); add(N+M+i,x,);
}
}
while(dis[S]<=T) maxflow+=sap(S,inf);
printf("%d\n",ans-maxflow);
return ;
}

BZOJ3438:小M的作物 (最大闭合权图->最小割)的更多相关文章

  1. bzoj3438: 小M的作物(那年花开最小割)

    3438: 小M的作物 题目:传送门 题解: 最小割标准水题(做了几天的最小割之后表示是真的水) 为什么水:博主已经做过两道基本一样的题目了... 详情参考:bzoj3894 代码: #include ...

  2. P1361 小M的作物 【网络流】【最小割】

    题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号). 现在,第i种作物种植在A中种植可 ...

  3. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

  4. hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)

    要选出一些点,这些点之间没有相邻边且要求权值之和最大,求这个权值 分析:二分图带权最大独立集. 用最大流最小割定理求解.其建图思路是:将所有格点编号,奇数视作X部,偶数视作Y部,建立源点S和汇点T, ...

  5. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  6. BZOJ3438小M的作物——最小割

    题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可 ...

  7. BZOJ3438 小M的作物(和拓展)

    题目链接:戳我 我们如果要选择一种种植情况的话,一定是其他的选择都不可行了.这种决策问题用最小割来处理最好不过. 建图方式--A为源点,B为汇点.然后将每个点分别向A,B连边,边权为种植它的价值.组合 ...

  8. CF1082G:G. Petya and Graph(裸的最大闭合权图)

    Petya has a simple graph (that is, a graph without loops or multiple edges) consisting of n n vertic ...

  9. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

随机推荐

  1. sql 筛选表中指定字段包含26某个小写字母

    SELECT *from 表名WHERE 字段 COLLATE Chinese_PRC_CS_AS LIKE '%[abcdefghijklmnopqrstuvwxyz]%'筛选表中指定字段包含26某 ...

  2. Ubuntu安装zabbix

     1.安装依赖包     安装mysql     安装nginx apt-get install php5-cli php5-cgi php5-fpm php5-mcrypt php5-mysql p ...

  3. QT 样式表基础知识

    1. 何为Qt样式表2. 样式表语法基础3. 方箱模型4. 前景与背景5. 创建可缩放样式6. 控制大小7. 处理伪状态8. 使用子部件定义微观样式 8.1. 相对定位    8.2. 绝对定位 摘要 ...

  4. vc++获取系统网卡列表及IP地址信息

    #include "stdafx.h" #include <Windows.h> #include <IPHlpApi.h> #include <io ...

  5. pwm计时器

    1 PWM timer定时器与(watchdog差不多)2 5个16位的定时器,独立的,其中,NO PIN 没有输出.16表示ffff,和ADC中10表示3FF一样.而寄存器都是32位.(以后6410 ...

  6. PWA web应用模型

    2018年的第一篇博客,最近都去挤图书馆了,希望新年新气象... 简介 PWA 是一门Google推出的web前端新技术,全称是Progressive Web App,是Google在2015年提出, ...

  7. [oracle] DBLINK +同义词,实现本地数据库访问另一台机器的数据库

    起因:订单表原来在90库上,后各种原因移到了40库上,需访问40库上的订单表.采用DBLINK+同义词方法: -- 1 在90机器上用GPSV4登录PLSQL,创建DBLINK,从本地数据库,连接到远 ...

  8. Shell_NotifyIcon托盘图标闪烁

    之前的同事留下了一个程序会莫名闪退的bug,今天终于发现是托盘图标闪烁使得gdi资源耗尽导致的. 先定义 #include "shellapi.h" //托盘图标引用 NOTIFY ...

  9. qt4.8中多线程的几种方式

    第一: 用QtConcurrentRun类,适合在另一个线程中运行一个函数.不用继承类,很方便 第二:用QRunnable和QThreadPool结合.继承QRunnable,重写run函数,然后用Q ...

  10. zen cart 空白页面的解决方案

    在安装zen cart 这套CMS时, 有时候会由于修改了某些页面或者是由于环境的某些组件的版本问题导致前台页面出现空白页, 由于在空白页面处没有任何提示, 并且在日志中也没有这样的出错提示, 导致在 ...