小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子
有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai的收益,在B中种植
可以获得bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益
,小M找到了规则中共有m种作物组合,第i个组合中的作物共同种在A中可以获得c1i的额外收益,共同总在B中可以
获得c2i的额外收益,所以,小M很快的算出了种植的最大收益,但是他想要考考你,你能回答他这个问题么?
Input
第一行包括一个整数n
第二行包括n个整数,表示ai第三行包括n个整数,表示bi第四行包括一个整数m接下来m行,
对于接下来的第i行:第一个整数ki,表示第i个作物组合中共有ki种作物,
接下来两个整数c1i,c2i,接下来ki个整数,表示该组合中的作物编号。输出格式
Output
只有一行,包括一个整数,表示最大收益 Sample Input Sample Output 样例解释A耕地种1,,B耕地种3,收益4+++=。
<=k< n<= , < m < = 保证所有数据及结果不超过2*^。

思路:orzpopoqqq。假定全部在A里,然后去找增广流。  如果很好地理解了用最大流求最大闭合权图的话,就不难想通。

最大闭合权图:原点与代价点连接,收益点与汇点连接; 收益和-最大流=最大净收益。 那么现在的基本代价或者收益是ai-bi,。然后破坏集合的代价是c1i,得到集合的收益是c2i。 差不多就酱紫。具体的请去看popoqqq的题解。

和BZOJ3894差不多,就不多说了:http://www.cnblogs.com/hua-dong/p/8655375.html

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const long long inf=;
int N,M,S,T,cnt=;
long long ans,maxflow,cap[maxn];
int Laxt[maxn],To[maxn],Next[maxn],vd[maxn],dis[maxn];
void add(int u,int v,long long c)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cap[cnt]=c;
}
long long sap(int u,long long flow)
{
if(flow==||u==T) return flow;
long long tmp,delta=;
for(int i=Laxt[u];i;i=Next[i]){
if(dis[u]==dis[To[i]]+&&cap[i]>){
tmp=sap(To[i],min(cap[i],flow-delta));
delta+=tmp;
cap[i]-=tmp;
cap[i^]+=tmp;
if(delta==flow||dis[S]>T+) return delta;
}
}
vd[dis[u]]--;
if(vd[dis[u]]==) dis[S]=T+;
vd[++dis[u]]++;
return delta;
}
int main()
{
int i,j,x,y,num; scanf("%d",&N);
S=; T=;
for(i=;i<=N;i++){
scanf("%d",&x); ans+=x;
add(S,i,x); add(i,S,);
}
for(i=;i<=N;i++){
scanf("%d",&x); ans+=x;
add(i,T,x); add(T,i,);
}
scanf("%d",&M);
for(i=;i<=M;i++){
scanf("%d",&num);
scanf("%d%d",&x,&y);
ans+=x+y;
add(S,N+i,x); add(N+i,S,);
add(N+M+i,T,y); add(T,N+M+i,);
for(j=;j<=num;j++){
scanf("%d",&x);
add(N+i,x,inf); add(x,N+i,);
add(x,N+M+i,inf); add(N+M+i,x,);
}
}
while(dis[S]<=T) maxflow+=sap(S,inf);
printf("%d\n",ans-maxflow);
return ;
}

BZOJ3438:小M的作物 (最大闭合权图->最小割)的更多相关文章

  1. bzoj3438: 小M的作物(那年花开最小割)

    3438: 小M的作物 题目:传送门 题解: 最小割标准水题(做了几天的最小割之后表示是真的水) 为什么水:博主已经做过两道基本一样的题目了... 详情参考:bzoj3894 代码: #include ...

  2. P1361 小M的作物 【网络流】【最小割】

    题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号). 现在,第i种作物种植在A中种植可 ...

  3. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

  4. hdu 1569 &1565 (二分图带权最大独立集 - 最小割应用)

    要选出一些点,这些点之间没有相邻边且要求权值之和最大,求这个权值 分析:二分图带权最大独立集. 用最大流最小割定理求解.其建图思路是:将所有格点编号,奇数视作X部,偶数视作Y部,建立源点S和汇点T, ...

  5. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  6. BZOJ3438小M的作物——最小割

    题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可 ...

  7. BZOJ3438 小M的作物(和拓展)

    题目链接:戳我 我们如果要选择一种种植情况的话,一定是其他的选择都不可行了.这种决策问题用最小割来处理最好不过. 建图方式--A为源点,B为汇点.然后将每个点分别向A,B连边,边权为种植它的价值.组合 ...

  8. CF1082G:G. Petya and Graph(裸的最大闭合权图)

    Petya has a simple graph (that is, a graph without loops or multiple edges) consisting of n n vertic ...

  9. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

随机推荐

  1. RabbitMQ入门(4)——路由(Routing)

    这一篇我们将介绍如何订阅消息的一个子集.例如,我们只需要将日志中的error消息存储到日志文件中而将所有日志消息都在控制台打印出来. 绑定(Bindings) 在前面的例子中,我们创建了交换机和队列的 ...

  2. HMM代码实践

    本文主要转载于:http://www.52nlp.cn/hmm-learn-best-practices-eight-summary 这个文章是边看边实践加上自己的一些想法生成的初稿..... 状态转 ...

  3. solr 5.1.0安装-Windows(亦可用于5.4.1)

    以前4.10的时候写过一个安装教程,是安装在tomcat的,在来安装5.1的时候,看了下简介,发现从5.x后solr集成了jetty,安装变得简单了不少. 现在只需要三步就能搞定,下载solr包解压, ...

  4. 前端要不要学数据结构&算法

    我们都知道前端开发工程师更多偏向 DOM 渲染和 DOM 交互操作,随之 Node 的推广前端工程师也可以完成服务端开发.对于服务端开发而言大家都觉得数据结构和算法是基础,非学不可.所以正在进行 No ...

  5. [Vue]Vue实例的选项props传递数据props为驼峰式命名

    在vue的中文官网有这样的说明: HTML 中的特性名是大小写不敏感的,所以浏览器会把所有大写字符解释为小写字符.这意味着当你使用 DOM 中的模板时,camelCase (驼峰命名法) 的 prop ...

  6. [javascript]jquery选择器笔记

    技术文档 中文:http://jquery.cuishifeng.cn/ 英文:http://api.jquery.com/category/selectors/ 分类 基本选择器 层次选择器 过滤选 ...

  7. js事件在不同浏览器之间的差异

    目录: 1. 介绍 2. 不同浏览器之间的差异 2.1 添加事件的方法 2.2 事件对象event 2.3 event中的属性/方法 3. 总结 1. 介绍 javascript与HTML之间的交互是 ...

  8. Linux虚拟机忘记root密码的拯救办法

    于是百度之,还是有很多解决方案的.其原理就是,进入到single单用户模式下,去修改root密码: 1.重启系统,选择Linux引导,然后按住e,出现如下界面: 按下e 出现如下页面 选择kernel ...

  9. pandas 运算

    Data frame 和 series 的运算:横列相加减:按照index ,row 的方向直接相加减.frame-series纵列相加减:按照 columns,运用算术函数,相加减. frame.s ...

  10. HDU1595-最短路-删边

    find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others)    Memory Limit: 32768/32768 ...