http://www.lydsy.com/JudgeOnline/problem.php?id=1011

题意:$f[i] = \sum_{j=1}^{i-1} \frac{M[i]M[j]}{i-j}$,求$1<=n<=10^5$的所有$f[i]$

orz 神题啊。。。

第一次做这种近似的题orz

首先n^2肯定是不可做的。。

然后看了题解。。

好神

首先得到$f[i]$表示第$i$个的能量, $g[i]$为题目给的$A*i$

$$f[i]=M_i \times \sum_{j=1}^{g[i]} \frac{M_j}{i-j}$$

而我们设$a=i+T$

$$f[a]=M_a \times \sum_{j=1}^{g[a]} \frac{M_j}{a-j}$$

$$ = M_a( \sum_{j=1}^{g[a-T]}\frac{M_j}{a-j}+\sum_{j=g[a-T]+1}^{g[a]} \frac{M_j}{a-j}) $$

$$ = M_a( \sum_{j=1}^{g[a-T]}\frac{M_j}{a-T-j} \times \frac{a-T-j}{a-j}+\sum_{j=g[a-T]+1}^{g[a]} \frac{M_j}{a-j}) $$

再利用数学上的技巧,可得到近似值:

$$ \approx M_a( \frac{f[a-T]}{M_{a-T}} \times \frac{a-T-\frac{g[a-T]}{2}}{a-\frac{g[a-T]}{2}}+\sum_{j=g[a-T]+1}^{g[a]} \frac{M_j}{a-j}) $$

右边数据小暴力搞就行了,t我一开始开1000wa了。。。。开100才a。。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const double eps=1e-8;
const int N=1e5+10, T=100;
int g[N], n;
double k, ans[N], m[N];
int main() {
read(n); scanf("%lf", &k);
for1(i, 1, n) scanf("%lf", &m[i]);
for1(i, 1, n) g[i]=(int)(floor(k*(double)i)+eps);
for1(i, 1, min(n, T)) {
for1(j, 1, g[i]) ans[i]+=m[j]/(i-j);
ans[i]*=m[i];
}
for1(i, min(n, T)+1, n) {
int pre=i-T;
for1(j, g[pre]+1, g[i]) ans[i]+=m[j]/(i-j);
ans[i]+=ans[pre]*(pre-g[pre]/2.0)/m[pre]/(i-g[pre]/2.0);
ans[i]*=m[i];
}
for1(i, 1, n) printf("%.6f\n", ans[i]+eps);
return 0;
}

  


Description

直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行星都只受到距离遥远的行星的作用。请计算每颗行星的受力,只要结果的相对误差不超过5%即可.

Input

第一行两个整数N和A. 1<=N<=10^5.0.01< a < =0.35 
接下来N行输入N个行星的质量Mi,保证0<=Mi<=10^7

Output

N行,依次输出各行星的受力情况

Sample Input

5 0.3
3
5
6
2
4

Sample Output

0.000000
0.000000
0.000000
1.968750
2.976000

HINT

精确结果应该为0 0 0 2 3,但样例输出的结果误差不超过5%,也算对

Source

 

【BZOJ】1011: [HNOI2008]遥远的行星(近似)的更多相关文章

  1. BZOJ 1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2559  Solved ...

  2. BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 4974  Solved ...

  3. [BZOJ 1011] [HNOI2008] 遥远的行星 【近似解】

    题目链接: BZOJ - 1011 题目分析 这道题的特别之处在于,答案可以有5%的误差. 嗯..So? 我还是不会,于是看题解. 神犇的题解就是利用这误差范围求一个近似解. 怎么求近似解呢?假如 g ...

  4. BZOJ.1011.[HNOI2008]遥远的行星(思路 枚举)

    题目链接 设当前为\(i\),令\(j=\lfloor a*i\rfloor\),\(1\sim j\) 即为对\(i\)有贡献的行星,这一区间的答案应为\[f[i]=M_i*\sum_{k=1}^j ...

  5. 1011: [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2241  Solved ...

  6. [bzoj1011](HNOI2008)遥远的行星(近似运算)

    Description 直 线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...

  7. bzoj1011 [HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2480  Solved ...

  8. 【bzoj1011】[HNOI2008]遥远的行星

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 3711  Solved ...

  9. BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】

    1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 5058  Solve ...

随机推荐

  1. android:ViewPager动画总结

    设置动画的方案: 我们能够使用ViewPager的setPageTransformer方法,为ViewPager设置动画.下面是几种常见动画的演示及效果: 1.CubeInTransformer wa ...

  2. Androidclient性能參数监控

    背景: 在做androidclient測试的时候.有时候须要监控cpu/mem/电量消耗/界面载入时间/流量等等指标. 于是俺们就上下求索,网友告诉我两个方案:AnotherMonitor和Emmag ...

  3. Python模块学习 ---- logging 日志记录

    许多应用程序中都会有日志模块,用于记录系统在运行过程中的一些关键信息,以便于对系统的运行状况进行跟踪.在.NET平台中,有非常著名的第三方开源日志组件log4net,c++中,有人们熟悉的log4cp ...

  4. if-else用法

      CreateTime--2016年10月31日14:22:25Author:Marydonif-else的多种用法: //方式一 function test1 (t) { var bl = t | ...

  5. android中checkbox的padding引发的问题

    自己定义checkbox中的勾选框图标.这次由于想偷懒.图标弄的大了些.然后一系列的问题就都引出来了. 1.图标比checkbox的layout_height高.看不见了. 非常吐血吧,Compoun ...

  6. 解决在sdk manager中更新文件后出现This Android SDK requires Android Developer Toolkit version 23.1的错误

    起因:在sdksdk manager中更新了adt及其它的支持库后,eclipse报错:This Android SDK requires Android Developer Toolkit vers ...

  7. C++ 多线程(两个线程卖火车票)

    #include <windows.h> #include <iostream.h> DWORD WINAPI Fun1Proc(LPVOID lpParameter);//t ...

  8. C语言的存储类型和关键字extern、static

    1.C语言中每个变量都有3个性质:存储期限.作用域.链接 1)存储期限:变量的存储期限决定了为变量预留的内存被释放的时间.共2种,自动存储期限(auto),静态存储期限(static),自动存储(au ...

  9. Decoration5:引入Actuator进行站点监控

    1.添加依赖 2.重启应用 3.下图显示了一些默认的监控端点 这是数据可以在前台用来做饼图和柱状图什么的,不过实际上我们现在还用不到,于是就不深入研究

  10. python 获取当前时间的用法

    1.先导入库:import datetime 2.获取当前日期和时间:now_time = datetime.datetime.now() 3.格式化成我们想要的日期:strftime() 比如:“2 ...