【BZOJ】1011: [HNOI2008]遥远的行星(近似)
http://www.lydsy.com/JudgeOnline/problem.php?id=1011
题意:$f[i] = \sum_{j=1}^{i-1} \frac{M[i]M[j]}{i-j}$,求$1<=n<=10^5$的所有$f[i]$
orz 神题啊。。。
第一次做这种近似的题orz
首先n^2肯定是不可做的。。
然后看了题解。。
好神
首先得到$f[i]$表示第$i$个的能量, $g[i]$为题目给的$A*i$
$$f[i]=M_i \times \sum_{j=1}^{g[i]} \frac{M_j}{i-j}$$
而我们设$a=i+T$
则
$$f[a]=M_a \times \sum_{j=1}^{g[a]} \frac{M_j}{a-j}$$
$$ = M_a( \sum_{j=1}^{g[a-T]}\frac{M_j}{a-j}+\sum_{j=g[a-T]+1}^{g[a]} \frac{M_j}{a-j}) $$
$$ = M_a( \sum_{j=1}^{g[a-T]}\frac{M_j}{a-T-j} \times \frac{a-T-j}{a-j}+\sum_{j=g[a-T]+1}^{g[a]} \frac{M_j}{a-j}) $$
再利用数学上的技巧,可得到近似值:
$$ \approx M_a( \frac{f[a-T]}{M_{a-T}} \times \frac{a-T-\frac{g[a-T]}{2}}{a-\frac{g[a-T]}{2}}+\sum_{j=g[a-T]+1}^{g[a]} \frac{M_j}{a-j}) $$
右边数据小暴力搞就行了,t我一开始开1000wa了。。。。开100才a。。。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const double eps=1e-8;
const int N=1e5+10, T=100;
int g[N], n;
double k, ans[N], m[N];
int main() {
read(n); scanf("%lf", &k);
for1(i, 1, n) scanf("%lf", &m[i]);
for1(i, 1, n) g[i]=(int)(floor(k*(double)i)+eps);
for1(i, 1, min(n, T)) {
for1(j, 1, g[i]) ans[i]+=m[j]/(i-j);
ans[i]*=m[i];
}
for1(i, min(n, T)+1, n) {
int pre=i-T;
for1(j, g[pre]+1, g[i]) ans[i]+=m[j]/(i-j);
ans[i]+=ans[pre]*(pre-g[pre]/2.0)/m[pre]/(i-g[pre]/2.0);
ans[i]*=m[i];
}
for1(i, 1, n) printf("%.6f\n", ans[i]+eps);
return 0;
}
Description
直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行星都只受到距离遥远的行星的作用。请计算每颗行星的受力,只要结果的相对误差不超过5%即可.
Input
第一行两个整数N和A. 1<=N<=10^5.0.01< a < =0.35
接下来N行输入N个行星的质量Mi,保证0<=Mi<=10^7
Output
N行,依次输出各行星的受力情况
Sample Input
3
5
6
2
4
Sample Output
0.000000
0.000000
1.968750
2.976000
HINT
精确结果应该为0 0 0 2 3,但样例输出的结果误差不超过5%,也算对
Source
【BZOJ】1011: [HNOI2008]遥远的行星(近似)的更多相关文章
- BZOJ 1011 [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2559 Solved ...
- BZOJ 1011 [HNOI2008]遥远的行星 (误差分析)
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 4974 Solved ...
- [BZOJ 1011] [HNOI2008] 遥远的行星 【近似解】
题目链接: BZOJ - 1011 题目分析 这道题的特别之处在于,答案可以有5%的误差. 嗯..So? 我还是不会,于是看题解. 神犇的题解就是利用这误差范围求一个近似解. 怎么求近似解呢?假如 g ...
- BZOJ.1011.[HNOI2008]遥远的行星(思路 枚举)
题目链接 设当前为\(i\),令\(j=\lfloor a*i\rfloor\),\(1\sim j\) 即为对\(i\)有贡献的行星,这一区间的答案应为\[f[i]=M_i*\sum_{k=1}^j ...
- 1011: [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2241 Solved ...
- [bzoj1011](HNOI2008)遥远的行星(近似运算)
Description 直 线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量, ...
- bzoj1011 [HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2480 Solved ...
- 【bzoj1011】[HNOI2008]遥远的行星
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 3711 Solved ...
- BZOJ1011 [HNOI2008]遥远的行星 【奇技淫巧】
1011: [HNOI2008]遥远的行星 Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge Submit: 5058 Solve ...
随机推荐
- 数据库case,when学习
前几天工作中遇到了一个数据库统计相关的东西,主要使用case,when实现.如今说说基本情况: 有两个表school,studens,当中 school表结构例如以下: students表结构例如以下 ...
- Learning English From Android Source Code:1
英语在软件行业的重要作用不言自明,尤其是做国际项目和写国际软件,好的英语表达是项目顺利进行的必要条件.纵观眼下的IT行业.可以流利的与国外客户英文口语交流的程序猿占比并非非常高.要想去国际接轨,语言这 ...
- C++设计模式实现--职责链(Chain of Responsibility)模式
一. 概述 职责链模式: 使多个对象都有机会处理请求.从而避免请求的发送者和接收者之间的耦合关系.将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止. 二. 举个样例 员工要求加薪 ...
- Ubuntu和windows文件共享问题
ubuntu访问windows共享文件夹(ubuntu桌面系统): 最简单的方法,随便打开一个文件夹,按Ctrl+L,然后地址栏敲smb://xxx.xxx.xxx.xxx(wind ...
- centos 配置 samba 与windows共享文件夹
yum install samba /etc/samba/smb.conf directory mask = 0777 ← 指定新建目录的属性(以下4行) force directory mode = ...
- Linux命令-目录处理命令:cp
cp /etc/grub.conf /tmp 复制一个文件 cp -r /tmp/beijing/dongchengqu /root 复制dongchengqu目录到root目录 cp /root/i ...
- EL表达式中fn函数
JSTL 使用表达式来简化页面的代码,这对一些标准的方法,例如bean的getter/setter方法,请求参数或者context以及 session中的数据的访问非常方便,但是我们在实际应用中经常需 ...
- window.onunload | window.onbeforeunload
先引述一段jQuery 官方对于onunload的评述: The unload event is sent to the window element when the user navigates ...
- 输出流格式化(以操纵子方式格式化,以ios类成员函数方式格式化)
一.以操纵子方式格式化 数据输入输出的格式控制使用系统头文件<iomanip>中提供的操纵符.把它们作为插入操作符<<的输出对象即可.如setiosflags.setw.set ...
- ffmpeg command
1. 列出当前系统的设备列表 ffmpeg -list_devices true -f dshow -i dummy 2. 列出设备Integrated Camera的信息 ffmpeg -list_ ...