http://poj.org/problem?id=1523

太弱。。。

too weak。。

割点我都还要看书和看题解来写。。果然是写不出么。。

割点就那样求,然后分量直接这个节点有多少子树就有子树个数+1个分量。还要注意root的特判。。sigh。。就是崩这里了。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=2005;
int ihead[N], cnt, rt, iscut[N], FF[N], LL[N], fa[N], tot;
struct ED { int to, next; }e[N*N];
void add(int u, int v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
void tarjan(int u, int fa) {
FF[u]=LL[u]=++tot;
int child=0;
for(int i=ihead[u]; i; i=e[i].next) {
int v=e[i].to;
if(!FF[v]) {
tarjan(v, u);
++child;
if(LL[v]>=FF[u]) ++iscut[u]; //dbg(iscut[u]); dbg(u);
LL[u]=min(LL[v], LL[u]);
}
else if(FF[v]<FF[u] && fa!=v) LL[u]=min(LL[u], FF[v]);
}
if(child==1 && fa==-1) iscut[u]=0;
else if(child>1 && fa==-1) iscut[u]=child-1; //特判
} int main() {
int u, v, cs=0;
while(1) {
u=getint(); if(u==0) break;
v=getint();
CC(ihead, 0); CC(iscut, 0); cnt=tot=0; CC(FF, 0); CC(LL, 0);
++cs;
add(u, v); rt=max(rt, v);
while(1) {
u=getint(); if(u==0) break;
v=getint();
add(u, v); rt=max(rt, v);
}
for1(i, 1, rt) if(ihead[i] && !FF[i]) tarjan(i, -1);
// for1(i, 1, rt) if(hav[i] && iscut[i]) printf("%d\n", i);
int flag=0;
printf("Network #%d\n", cs);
for1(i, 1, rt) if(iscut[i]) printf(" SPF node %d leaves %d subnets\n", i, iscut[i]+1), flag=1;
if(!flag) puts(" No SPF nodes");
puts("");
}
return 0;
}

Description

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

Node 3 is therefore a Single Point of Failure (SPF) for this
network. Strictly, an SPF will be defined as any node that, if
unavailable, would prevent at least one pair of available nodes from
being able to communicate on what was previously a fully connected
network. Note that the network on the right has no such node; there is
no SPF in the network. At least two machines must fail before there are
any pairs of available nodes which cannot communicate.

Input

The
input will contain the description of several networks. A network
description will consist of pairs of integers, one pair per line, that
identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2
1 specify the same connection. All node numbers will range from 1 to
1000. A line containing a single zero ends the list of connected nodes.
An empty network description flags the end of the input. Blank lines in
the input file should be ignored.

Output

For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

The first network in the file should be identified as "Network #1",
the second as "Network #2", etc. For each SPF node, output a line,
formatted as shown in the examples below, that identifies the node and
the number of fully connected subnets that remain when that node fails.
If the network has no SPF nodes, simply output the text "No SPF nodes"
instead of a list of SPF nodes.

Sample Input

1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0

Sample Output

Network #1
SPF node 3 leaves 2 subnets Network #2
No SPF nodes Network #3
SPF node 2 leaves 2 subnets
SPF node 3 leaves 2 subnets

Source

【POJ】1523 SPF(割点)的更多相关文章

  1. POJ 1523 SPF (割点,连通分量)

    题意:给出一个网络(不一定连通),求所有的割点,以及割点可以切分出多少个连通分量. 思路:很多种情况. (1)如果给的图已经不是连通图,直接“  No SPF nodes”. (2)求所有割点应该不难 ...

  2. POJ 1523 SPF 割点与桥的推断算法-Tarjan

    题目链接: POJ1523 题意: 问一个连通的网络中有多少个关节点,这些关节点分别能把网络分成几部分 题解: Tarjan 算法模板题 顺序遍历整个图,能够得到一棵生成树: 树边:可理解为在DFS过 ...

  3. POJ 1523 SPF 割点 Tarjan

    SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9317   Accepted: 4218 Description C ...

  4. Electricity POJ - 2117 + SPF POJ - 1523 去除割点后求强连通分量个数问题

    Electricity POJ - 2117 题目描述 Blackouts and Dark Nights (also known as ACM++) is a company that provid ...

  5. poj 1523 SPF(双连通分量割点模板)

    题目链接:http://poj.org/problem?id=1523 题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块. 题目分析:割点用tarjan算法求出来,对于每个割点 ...

  6. zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)

    poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...

  7. POJ 1523 SPF tarjan求割点

                                                                   SPF Time Limit: 1000MS   Memory Limit ...

  8. POJ 1523 SPF(求割点)

    题目链接 题意 : 找出图中所有的割点,然后输出删掉他们之后还剩多少个连通分量. 思路 : v与u邻接,要么v是u的孩子,要么u是v的祖先,(u,v)构成一条回边. //poj1523 #includ ...

  9. POJ 1523 SPF (去掉割点能形成联通块的个数)

    思路:使用tarjan算法求出割点,在枚举去掉每一个割点所能形成的联通块的个数. 注意:后来我看了下别的代码,发现我的枚举割点的方式是比较蠢的方式,我们完全可以在tarjan过程中把答案求出来,引入一 ...

  10. POJ 1523 SPF (无向图割点)

    <题目链接> 题目大意: 给你一个连通的无向图,问你其中割点的编号,并且输出删除该割点后,原图会被分成几个连通分量. 解题分析: Tarjan求割点模板题. #include <cs ...

随机推荐

  1. PHP开发学习门户第三版UI正式上线

    官网:http://www.phpthinking.com/ 论坛:http://bbs.phpthinking.com/ 迭代.迭代,似魔鬼的步伐.似魔鬼的步伐-- PHP开发学习门户第二版UI用了 ...

  2. 【Django】TemplateDoesNotExist at /login/

    在Django项目中配置一个简单的页面跳转 说明 OliverPro 为项目名称 ProApp 为应用程序 项目文件结构如下: 文件配置如下: 项目中的urls 应用程序urls views.py文件 ...

  3. Hadoop源码分析(MapTask辅助类,II)

    有了上面Mapper输出的内存存储结构和硬盘存储结构讨论,我们来细致分析MapOutputBuffer的流程.首先是成员变量.最先初始化的是作业配置job和统计功能reporter.通过配置,MapO ...

  4. js open窗口父子窗口操作

    http://zhidao.baidu.com/question/61358246.html?an=0&si=1 js open窗口父子窗口操作     父窗口js代码:   function ...

  5. Windows2008 R2下,应用程序池 'XXXXXXXX' 被自动禁用,原因是为此应用程序池提供服务的进程中出现一系列错误。

    转:http://www.cnblogs.com/freeton/archive/2012/08/28/2660585.html http://www.hack001.com/post/151

  6. 如何用原生js或jquery设置select的值

    1.原生js设置select值的方法 (1)有时可能需要隐藏select,但是还得需要更改select所传递的值.(select的默认选中之为第一个,即下标为0的选项值) var gd2=docume ...

  7. 【转载】Linux 系统时间查看 及 时区修改(自动同步时间)

    1:使用date命令查看时区 [root@db-server ~]# date -R   Sun, 11 Jan 2015 07:10:28 -0800   [root@db-server ~]#   ...

  8. unity, do nothing的state

    要想在animator的stateMachine中建一个"doNothing",要注意:为了保证"doNothing"state能正常运转,不被无故跳过, Mo ...

  9. Atitit.mssql 数据库表记录数and 表体积大小统计

    Atitit.mssql 数据库表记录数and 表体积大小统计 1. EXEC   sp_MSforeachtable   "EXECUTE   sp_spaceused   '?'&quo ...

  10. atitit.html5 vs 原生 app的区别与选择

    atitit.html5  vs 原生 app的区别与选择 1. html5的优点 1 1.1. 最大优势::在跨平台(ios苹果,android安卓等) 1 1.2. 开放性 1 1.3. 快速的更 ...