http://poj.org/problem?id=1523

太弱。。。

too weak。。

割点我都还要看书和看题解来写。。果然是写不出么。。

割点就那样求,然后分量直接这个节点有多少子树就有子树个数+1个分量。还要注意root的特判。。sigh。。就是崩这里了。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=2005;
int ihead[N], cnt, rt, iscut[N], FF[N], LL[N], fa[N], tot;
struct ED { int to, next; }e[N*N];
void add(int u, int v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
void tarjan(int u, int fa) {
FF[u]=LL[u]=++tot;
int child=0;
for(int i=ihead[u]; i; i=e[i].next) {
int v=e[i].to;
if(!FF[v]) {
tarjan(v, u);
++child;
if(LL[v]>=FF[u]) ++iscut[u]; //dbg(iscut[u]); dbg(u);
LL[u]=min(LL[v], LL[u]);
}
else if(FF[v]<FF[u] && fa!=v) LL[u]=min(LL[u], FF[v]);
}
if(child==1 && fa==-1) iscut[u]=0;
else if(child>1 && fa==-1) iscut[u]=child-1; //特判
} int main() {
int u, v, cs=0;
while(1) {
u=getint(); if(u==0) break;
v=getint();
CC(ihead, 0); CC(iscut, 0); cnt=tot=0; CC(FF, 0); CC(LL, 0);
++cs;
add(u, v); rt=max(rt, v);
while(1) {
u=getint(); if(u==0) break;
v=getint();
add(u, v); rt=max(rt, v);
}
for1(i, 1, rt) if(ihead[i] && !FF[i]) tarjan(i, -1);
// for1(i, 1, rt) if(hav[i] && iscut[i]) printf("%d\n", i);
int flag=0;
printf("Network #%d\n", cs);
for1(i, 1, rt) if(iscut[i]) printf(" SPF node %d leaves %d subnets\n", i, iscut[i]+1), flag=1;
if(!flag) puts(" No SPF nodes");
puts("");
}
return 0;
}

Description

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

Node 3 is therefore a Single Point of Failure (SPF) for this
network. Strictly, an SPF will be defined as any node that, if
unavailable, would prevent at least one pair of available nodes from
being able to communicate on what was previously a fully connected
network. Note that the network on the right has no such node; there is
no SPF in the network. At least two machines must fail before there are
any pairs of available nodes which cannot communicate.

Input

The
input will contain the description of several networks. A network
description will consist of pairs of integers, one pair per line, that
identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2
1 specify the same connection. All node numbers will range from 1 to
1000. A line containing a single zero ends the list of connected nodes.
An empty network description flags the end of the input. Blank lines in
the input file should be ignored.

Output

For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

The first network in the file should be identified as "Network #1",
the second as "Network #2", etc. For each SPF node, output a line,
formatted as shown in the examples below, that identifies the node and
the number of fully connected subnets that remain when that node fails.
If the network has no SPF nodes, simply output the text "No SPF nodes"
instead of a list of SPF nodes.

Sample Input

1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0

Sample Output

Network #1
SPF node 3 leaves 2 subnets Network #2
No SPF nodes Network #3
SPF node 2 leaves 2 subnets
SPF node 3 leaves 2 subnets

Source

【POJ】1523 SPF(割点)的更多相关文章

  1. POJ 1523 SPF (割点,连通分量)

    题意:给出一个网络(不一定连通),求所有的割点,以及割点可以切分出多少个连通分量. 思路:很多种情况. (1)如果给的图已经不是连通图,直接“  No SPF nodes”. (2)求所有割点应该不难 ...

  2. POJ 1523 SPF 割点与桥的推断算法-Tarjan

    题目链接: POJ1523 题意: 问一个连通的网络中有多少个关节点,这些关节点分别能把网络分成几部分 题解: Tarjan 算法模板题 顺序遍历整个图,能够得到一棵生成树: 树边:可理解为在DFS过 ...

  3. POJ 1523 SPF 割点 Tarjan

    SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9317   Accepted: 4218 Description C ...

  4. Electricity POJ - 2117 + SPF POJ - 1523 去除割点后求强连通分量个数问题

    Electricity POJ - 2117 题目描述 Blackouts and Dark Nights (also known as ACM++) is a company that provid ...

  5. poj 1523 SPF(双连通分量割点模板)

    题目链接:http://poj.org/problem?id=1523 题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块. 题目分析:割点用tarjan算法求出来,对于每个割点 ...

  6. zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)

    poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...

  7. POJ 1523 SPF tarjan求割点

                                                                   SPF Time Limit: 1000MS   Memory Limit ...

  8. POJ 1523 SPF(求割点)

    题目链接 题意 : 找出图中所有的割点,然后输出删掉他们之后还剩多少个连通分量. 思路 : v与u邻接,要么v是u的孩子,要么u是v的祖先,(u,v)构成一条回边. //poj1523 #includ ...

  9. POJ 1523 SPF (去掉割点能形成联通块的个数)

    思路:使用tarjan算法求出割点,在枚举去掉每一个割点所能形成的联通块的个数. 注意:后来我看了下别的代码,发现我的枚举割点的方式是比较蠢的方式,我们完全可以在tarjan过程中把答案求出来,引入一 ...

  10. POJ 1523 SPF (无向图割点)

    <题目链接> 题目大意: 给你一个连通的无向图,问你其中割点的编号,并且输出删除该割点后,原图会被分成几个连通分量. 解题分析: Tarjan求割点模板题. #include <cs ...

随机推荐

  1. [转发]在Visual Studio 2010/2012/2013/2015上使用C#开发Android/IOS安装包和操作步骤

    官方学习文档:http://developer.xamarin.com/guides/android/getting_started/ 官方学习例子:http://developer.xamarin. ...

  2. 51CTO 资料汇总 截止20150504

    ================帖子列表,请大家选择自己喜欢的汇总贴分享================ 考试认证: 1.备战2014软考!精品视频教程推荐(综合复习+经验分享+考前冲刺)[随时更新] ...

  3. Ubuntu 14.04安装配置NFS

    (一)安装NFS服务器 sudo apt-get install nfs-kernel-server sudo apt-get install nfs-common​(在安装nsf-kernel-se ...

  4. JAVA编译器常量

    编译器常量的特点就是:它的值在编译期就可以确定.比如: final int i = 5; 再傻的编译器也能在编译时看出它的值是5,不需要到运行时.对于运行时常量,它的值虽然在运行时初始化后不再发生变化 ...

  5. mosquitto -- 权限配置

    Mosquitto 权限是根据 topic 控制的.类似与目录管理.您可以设定每个用户订阅/发布权限.也可以设定每个用户可访问的topic范围.从而达到权限控制的目的. 这里我们需要我另外一个帖子(用 ...

  6. 线程池c3p0和dbcp2的配置初始化实例

    一.c3p0 public class ConnectionManager { public static ComboPooledDataSource dataSource; static { try ...

  7. SIP/2.0 403 Forbidden(Invalid domain in From: header)

    一.错误场景 FreeSWITCH通过网关和一台支持SIP的网关设备互联,一个呼叫发过去,收到这个错误. FreeSWITCH的地址是192.168.1.99. 网关设备的地址是192.168.1.2 ...

  8. ubuntu下载软件安装包

    apt-get -d download xxx ubuntu下载软件安装包命令.仅仅下载deb格式的安装包,不安装. xxx是待下载的安装包.

  9. suid/guid用法 suid/guid详细解析

    suid/guid 我们在前面曾经提到过s u i d和g u i d.这种权限位近年来成为一个棘手的问题.很多系统供应商不允许实现这一位,或者即使它被置位,也完全忽略它的存在,因为它会带来安全性风险 ...

  10. 使用802.1X+FreeRadius+LDAP实现网络准入方案

    前言:在很多运维项目交流中,我们发现有一些运维团队还是在尝试使用网管或桌面管理来进行网络准入管理,但这两个技术有一定的缺点,所以本文分享一下802.1X+开源软件整合的网络准入管理的实践. 网络准入业 ...