# -*- coding: utf-8 -*-
"""
Created on Thu Sep 21 12:24:37 2017 @author: Douzi
""" import pandas as pd # 用户信息
unames = ['user_id', 'gender', 'age', 'occupation', 'zip']
users = pd.read_table('ch02/movielens/users.dat', sep='::', header=None, names=unames, engine='python') # 电影排名
rnames = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings = pd.read_table('ch02/movielens/ratings.dat', sep='::', header=None, names=rnames,engine='python') # 电影信息
mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('ch02/movielens/movies.dat', sep='::', header=None, names=mnames, engine='python') users[:5]
Out[113]:
user_id gender age occupation zip
0 1 F 1 10 48067
1 2 M 56 16 70072
2 3 M 25 15 55117
3 4 M 45 7 02460
4 5 M 25 20 55455 ratings[:5]
Out[114]:
user_id movie_id rating timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291 movies[:5]
Out[115]:
movie_id title genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
  • 合并数据

  • 根据任意个用户或电影属性对评分数据进行聚合操作

  • 按性别计算每部电影的平均得分(产生了另一个DataFrame,其内容是电影平均分,行标为电影名称,列标为性别)

  • 对title进行分组, 利用size() 得到一个含有各个电影分组大小的 Series对象:

  • 为了了解女性观众最喜欢的电影,我们可以对F列降序排列

# -*- coding: utf-8 -*-

import pandas as pd

# 用户信息
unames = ['user_id', 'gender', 'age', 'occupation', 'zip'] users = pd.read_table('pydata-book-master/ch02/movielens/users.dat', sep='::', header=None, names=unames, engine='python') # 电影排名
rnames = ['user_id', 'movie_id', 'rating', 'timestamp'] ratings = pd.read_table('pydata-book-master/ch02/movielens/ratings.dat', sep='::', header=None, names=rnames,engine='python') # 电影信息
mnames = ['movie_id', 'title', 'genres'] movies = pd.read_table('pydata-book-master/ch02/movielens/movies.dat', sep='::', header=None, names=mnames, engine='python') data = pd.merge(pd.merge(ratings, users), movies) data.ix[0] mean_ratings = data.pivot_table('rating', index='title',
columns='gender', aggfunc='mean') mean_ratings[:5] # 过滤掉评分数据不够250条的电影
# 对title进行分组,然后利用size()得到一个含有各电影分组大小的Series对象
ratings_by_title = data.groupby('title').size() ratings_by_title[:10] active_titles = ratings_by_title.index[ratings_by_title >= 250] # 该索引中含有评分数据>250条的电影名称,然后根据前面的mean_ratings中
# 选取所需的行
mean_ratings = mean_ratings.ix[active_titles] top_female_ratings = mean_ratings.sort_index(by='F', ascending=False) top_female_ratings[:10]

结果:

top_female_ratings[:10]
Out[4]:
gender F M
title
Close Shave, A (1995) 4.644444 4.473795
Wrong Trousers, The (1993) 4.588235 4.478261
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 4.572650 4.464589
Wallace & Gromit: The Best of Aardman Animation... 4.563107 4.385075
Schindler's List (1993) 4.562602 4.491415
Shawshank Redemption, The (1994) 4.539075 4.560625
Grand Day Out, A (1992) 4.537879 4.293255
To Kill a Mockingbird (1962) 4.536667 4.372611
Creature Comforts (1990) 4.513889 4.272277
Usual Suspects, The (1995) 4.513317 4.518248
  • 计算评分分歧

  • 找到男性和女性观众分歧最大的电影。

# 给mean_ratings加上一个用于存放平均得分之差的列,并对其进行排序:

mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F']

sorted_by_diff = mean_ratings.sort_index(by='diff')
# 按“diff” 排序即可得到分歧最大,且女性观众更喜欢的电影。
sorted_by_diff[:15]
Out[9]:
gender F M diff
title
Dirty Dancing (1987) 3.790378 2.959596 -0.830782
Jumpin' Jack Flash (1986) 3.254717 2.578358 -0.676359
Grease (1978) 3.975265 3.367041 -0.608224
Little Women (1994) 3.870588 3.321739 -0.548849
Steel Magnolias (1989) 3.901734 3.365957 -0.535777
Anastasia (1997) 3.800000 3.281609 -0.518391
Rocky Horror Picture Show, The (1975) 3.673016 3.160131 -0.512885
Color Purple, The (1985) 4.158192 3.659341 -0.498851
Age of Innocence, The (1993) 3.827068 3.339506 -0.487561
Free Willy (1993) 2.921348 2.438776 -0.482573
French Kiss (1995) 3.535714 3.056962 -0.478752
Little Shop of Horrors, The (1960) 3.650000 3.179688 -0.470312
Guys and Dolls (1955) 4.051724 3.583333 -0.468391
Mary Poppins (1964) 4.197740 3.730594 -0.467147
Patch Adams (1998) 3.473282 3.008746 -0.464536
# 对排序结果反序并取出前15行,得到的则是男性观众更喜欢的电影
sorted_by_diff[::-1][:15
]

Out[11]:
gender F M diff
title
Good, The Bad and The Ugly, The (1966) 3.494949 4.221300 0.726351
Kentucky Fried Movie, The (1977) 2.878788 3.555147 0.676359
Dumb & Dumber (1994) 2.697987 3.336595 0.638608
Longest Day, The (1962) 3.411765 4.031447 0.619682
Cable Guy, The (1996) 2.250000 2.863787 0.613787
Evil Dead II (Dead By Dawn) (1987) 3.297297 3.909283 0.611985
Hidden, The (1987) 3.137931 3.745098 0.607167
Rocky III (1982) 2.361702 2.943503 0.581801
Caddyshack (1980) 3.396135 3.969737 0.573602
For a Few Dollars More (1965) 3.409091 3.953795 0.544704
Porky's (1981) 2.296875 2.836364 0.539489
Animal House (1978) 3.628906 4.167192 0.538286
Exorcist, The (1973) 3.537634 4.067239 0.529605
Fright Night (1985) 2.973684 3.500000 0.526316
Barb Wire (1996) 1.585366 2.100386 0.515020
# 根据电影名称分组的得分数据的标准差

rating_std_by_title = data.groupby('title')['rating'].std()

# 根据active_titles进行过滤

rating_std_by_title = rating_std_by_title.ix[active_titles]

# 根据值对Series进行降序排列

rating_std_by_title.order(ascending=False)[:10]
rating_std_by_title.order(ascending=False)[:10]
Out[17]:
title
Dumb & Dumber (1994) 1.321333
Blair Witch Project, The (1999) 1.316368
Natural Born Killers (1994) 1.307198
Tank Girl (1995) 1.277695
Rocky Horror Picture Show, The (1975) 1.260177
Eyes Wide Shut (1999) 1.259624
Evita (1996) 1.253631
Billy Madison (1995) 1.249970
Fear and Loathing in Las Vegas (1998) 1.246408
Bicentennial Man (1999) 1.245533
Name: rating, dtype: float64

Python进行数据分析(二)MovieLens 1M 数据集的更多相关文章

  1. 《利用Python进行数据分析》笔记---第2章--MovieLens 1M数据集

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  2. 利用python进行数据分析PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书

    点击获取提取码:hi2j 内容简介 [名人推荐] "科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法.本书在未来几年里肯定会成为Python领域中技术计 ...

  3. 《利用python进行数据分析》读书笔记 --第一、二章 准备与例子

    http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得 ...

  4. 利用python进行数据分析——(一)库的学习

    总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用 ...

  5. 利用python进行数据分析之pandas入门

    转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5. ...

  6. 《利用Python进行数据分析·第2版》第四章 Numpy基础:数组和矢量计算

    <利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对 ...

  7. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  8. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  9. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

随机推荐

  1. Java 学习笔记 ------第六章 继承与多态

    本章学习目标: 了解继承的目的 了解继承与多态的关系 知道如何重新定义方法 认识java.lang.object 简介垃圾回收机制 一.继承 继承是java面向对象编程技术的一块基石,因为它允许创建分 ...

  2. CS小分队第二阶段冲刺站立会议(5月27日)

    昨天成果:昨日有些小意外,导致没有按照原定计划工作.昨天为扫雷游戏增加了新的失败特效,只要玩家点到地雷,所有的地雷都会依次出现两帧的爆炸效果,并伴随声音. 今日计划:排除一些现有程序的bug.. 遇到 ...

  3. 软件工程 speedsnail 第二次冲刺10

    20150527 完成任务:蜗牛碰到线后速度方向的调整:已经基本实现多方向的反射: 遇到问题: 问题1 反射角的问题 解决1 利用tan()三角函数 明日任务: 大总结.找到新问题.布置下一次冲刺方案

  4. Nginx 使用札记

    nginx是什么? nginx是俄罗斯人 Igor Sysoev为俄罗斯访问量第二的Rambler.ru站点开发的一个十分轻量级的HTTP服务器.它是一个高性能的HTTP和反向代理服务器,同时也可以作 ...

  5. HDU 2012 FZU 1756关于素数的一些水题

    HDU 2012 素数判定 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  6. 做更好的自己 ——读《我是IT小小鸟》有感

    转眼间大一已经过了一大半了,到了大学,才发现初高中时父母所说的“到了大学你就轻松了···”都是骗人的.但我脑海里却一直被这个观点所支配,以至于我在大一上学期里无所事事,不知道干些什么.学习也没重视,分 ...

  7. Windows下IntelliJ IDEA中调试Spark Standalone

    参考:http://dataknocker.github.io/2014/11/12/idea%E4%B8%8Adebug-spark-standalone/ 转载请注明来自:http://www.c ...

  8. 【转】MySQL数据类型

    1.整型 MySQL数据类型 含义(有符号) tinyint(m) 1个字节  范围(-128~127) smallint(m) 2个字节  范围(-32768~32767) mediumint(m) ...

  9. C#开发移动应用 - 环境搭建

    前言 其实从2013开始就想用Xamarin,奈何 当初收费一座大山压在身上 完全无法见得庐山真面目 后面2015,微软收购Xamarin,没过多久就宣布对个人用户免费..那个兴奋劲就别提了.. 兴奋 ...

  10. Spring Security 入门详解

    序:本文主要参考 spring实战 对里面的知识做一个梳理 1.Spring Security介绍 Spring Security是基于spring的应用程序提供声明式安全保护的安全性框架,它提供了完 ...