题目描述

Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gang are practicing jumping over hurdles. They are getting tired, though, so they want to be able to use as little energy as possible to jump over the hurdles.

Obviously, it is not very difficult for a cow to jump over several very short hurdles, but one tall hurdle can be very stressful. Thus, the cows are only concerned about the height of the tallest hurdle they have to jump over.

The cows' practice room has N (1 ≤ N ≤ 300) stations, conveniently labeled 1..N. A set of M (1 ≤ M ≤ 25,000) one-way paths connects pairs of stations; the paths are also conveniently labeled 1..M. Path i travels from station Si to station Ei and contains exactly one hurdle of height Hi (1 ≤ Hi ≤ 1,000,000). Cows must jump hurdles in any path they traverse.

The cows have T (1 ≤ T ≤ 40,000) tasks to complete. Task i comprises two distinct numbers, Ai and Bi (1 ≤ Ai ≤ N; 1 ≤ Bi ≤ N), which connote that a cow has to travel from station Ai to station Bi (by traversing over one or more paths over some route). The cows want to take a path the minimizes the height of the tallest hurdle they jump over when traveling from Ai to Bi . Your job is to write a program that determines the path whose tallest hurdle is smallest and report that height.

  Farmer John 想让她的奶牛准备郡级跳跃比赛,贝茜和她的伙伴们正在练习跨栏。她们很累,所以她们想消耗最少的能量来跨栏。 显然,对于一头奶牛跳过几个矮栏是很容易的,但是高栏却很难。于是,奶牛们总是关心路径上最高的栏的高度。 奶牛的训练场中有 N (1 ≤ N ≤ 300) 个站台,分别标记为1..N。所有站台之间有M (1 ≤ M ≤ 25,000)条单向路径,第i条路经是从站台Si开始,到站台Ei,其中最高的栏的高度为Hi (1 ≤ Hi ≤ 1,000,000)。无论如何跑,奶牛们都要跨栏。 奶牛们有 T (1 ≤ T ≤ 40,000) 个训练任务要完成。第 i 个任务包含两个数字 Ai 和 Bi (1 ≤ Ai ≤ N; 1 ≤ Bi ≤ N),表示奶牛必须从站台Ai跑到站台Bi,可以路过别的站台。奶牛们想找一条路径从站台Ai到站台Bi,使路径上最高的栏的高度最小。 你的任务就是写一个程序,计算出路径上最高的栏的高度的最小值。

输入输出格式

输入格式:

  • Line 1: Three space-separated integers: N, M, and T

  • Lines 2..M+1: Line i+1 contains three space-separated integers: Si , Ei , and Hi

  • Lines M+2..M+T+1: Line i+M+1 contains two space-separated integers that describe task i: Ai and Bi

行 1: 两个整数 N, M, T

行 2..M+1: 行 i+1 包含三个整数 Si , Ei , Hi

行 M+2..M+T+1: 行 i+M+1 包含两个整数,表示任务i的起始站台和目标站台: Ai , Bi

输出格式:

  • Lines 1..T: Line i contains the result for task i and tells the smallest possible maximum height necessary to travel between the stations. Output -1 if it is impossible to travel between the two stations.

行 1..T: 行 i 为一个整数,表示任务i路径上最高的栏的高度的最小值。如果无法到达,输出 -1。

输入输出样例

输入样例#1:

5 6 3
1 2 12
3 2 8
1 3 5
2 5 3
3 4 4
2 4 8
3 4
1 2
5 1
输出样例#1:

4
8
-1
 //很简单的最短路,在 Floyd 上面做微小修改。正常的最短路是 sp(s, e) = min{sp(s, k) + sp(k, e)},这里最短路的计算方式不是边权求和而是边权求最大值,所以改成sp(s, e) = min{max{sp(s, k), sp(k,e)}} 即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll read()
{
ll ret=,ok=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')ok=-;
ch=getchar();
}
for(;ch>=''&&ch<='';ch=getchar())
ret=ret*+ch-'';
return ret*ok;
}
ll n,m,t;
ll s,h,e;
ll a,b;
ll sp[][];
const int INF=0x7fffffff;
int main()
{
n=read(),m=read(),t=read();
memset(sp,0x3f,sizeof(sp));
for(int i=;i<=m;i++)
{
cin>>s>>e>>h;
sp[s][e]=h;
}
for(int i=;i<=n;i++)
sp[i][i]=;
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
sp[i][j]=min(sp[i][j],max(sp[i][k],sp[k][j]));
}
for(int i=;i<=t;i++)
{
cin>>a>>b;
if(sp[a][b]>=INF)
cout<<-<<endl;
else
cout<<sp[a][b]<<endl;
}
return ;
}

Luogu P2888 [USACO07NOV]牛栏Cow Hurdles的更多相关文章

  1. bzoj1641 / P2888 [USACO07NOV]牛栏Cow Hurdles

    P2888 [USACO07NOV]牛栏Cow Hurdles Floyd $n<=300$?果断Floyd 给出核心式,自行体会 $d[i][j]=min(d[i][j],max(d[i][k ...

  2. 洛谷 P2888 [USACO07NOV]牛栏Cow Hurdles

    题目戳 题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the ...

  3. 洛谷P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

  4. [USACO07NOV]牛栏Cow Hurdles

    OJ题号:洛谷2888 思路:修改Floyd,把边权和改为边权最大值.另外注意是有向图. #include<cstdio> #include<algorithm> using ...

  5. 【题解】Luogu P2889 [USACO07NOV]挤奶的时间Milking Time

    Luogu P2889 [USACO07NOV]挤奶的时间Milking Time 题目描述 传送门Bessie is such a hard-working cow. In fact, she is ...

  6. BZOJ 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏( floyd )

    直接floyd.. ---------------------------------------------------------------------------- #include<c ...

  7. 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏

    1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 424  Solved: 272 ...

  8. POJ 3615 Cow Hurdles(最短路径flyod)

    Cow Hurdles Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9337   Accepted: 4058 Descr ...

  9. [LUOGU] P2886 [USACO07NOV]牛继电器Cow Relays

    https://www.luogu.org/problemnew/show/P2886 给定无向连通图,求经过k条边,s到t的最短路 Floyd形式的矩阵乘法,同样满足结合律,所以可以进行快速幂. 离 ...

随机推荐

  1. FastDFS角色配置参数思维导图

  2. 模块(module)

    1.模块加载 import math  //import后面跟模块名 from module1 import module11  //module1是一个大模块,里边有子模块module11,调用这个 ...

  3. mongodb进阶

    一.游标 先插入一张表的数据 for(i=0; i<100; i++) { db.c.insert({x : i}); } 定义一个游标 var cursor = db.c.find(); 以循 ...

  4. c#结构体、打他table、excel、csv互转

    1.csv相关 public static class CsvHelper { /// <summary> /// 根据csv路径获取datatable /// </summary& ...

  5. iOS-硬件授权检测【通讯录、相机、相册、日历、麦克风、定位授权】

    总结下几个常用到的获取手机权限,从iOS8以后,获取手机某种权限需要在info.plist文件中添加权限的描述文件 <key>NSContactsUsageDescription</ ...

  6. Linux history命令

    history命令主要用于显示历史命令, 重新执行历史命令. Linux系统当你在shell(控制台)中输入并执行命令时,shell会自动把你的命令记录到历史列表中,一般保存在用户目录下的.bash_ ...

  7. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  8. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  9. Windows Server 2016-命令行Ntdsutil迁移FSMO角色

    上章节我们介绍了有关图形化界面迁移FSMO角色,进行本章节之前我们首先回顾一下FSMO的五种操作主机角色:架构主机角色(Schema Master).域命名主机角色(Domain Naming Mas ...

  10. 简单的led驱动程序设计

    基于ok6410: led驱动程序: vim led.c #include<linux/kernel.h>#include<linux/module.h>#include< ...