无法用复杂状态进行转移时改变计算方式;巧妙的整体考虑;压缩空间优化时间

传送门:$>here<$

题意

给出一个n*m矩阵,从每一行选一个数加起来,可以得到一个和。易知总共会有$n^n$个和,输出最小的k个。

数据范围:$n,m \leq 800,k \leq m$

Solution

问题的转化

序列合并问题是这道题的弱化版——也就是在这道题目里规定n=2。这样的问题做法是先分别排序,然后默认a[1]与b[1..n]相加得到的n个和为最小,然后分别用其他的和去更新。由于单调性,a[i]一旦不能满足就立即跳出,可以证明复杂度接近$O(nlog^2n)$

这道题变成了n行,而我们可以将其转化为两行的问题——将前n-1行看做一个子问题。由于保证了k<=m,因此每做完一次就将若干行合并为一行,反复迭代即可。

启示

问题的转化

利用所要求的条件转化问题。尤其是这种非常类似的。

my code

第一行要特判

/*By DennyQi 2019*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
;
const int INF = 0x3f3f3f3f;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
    ; ; register char c = getchar();
    '); c = getchar());
    , c = getchar();
    ) + (x<<) + c - '; return x * w;
}
int n,m,K;
int a[MAXN],b[MAXN],c[MAXN];
priority_queue <int, vector<int>, less<int> > H;
inline void Merge(){
    while(H.size()) H.pop();
    ; i <= m; ++i){
        H.push(a[] + b[i]);
    }
    ; i <= m; ++i){
        ; j <= m; ++j){
            if(a[i]+b[j] < H.top()){
                H.pop();
                H.push(a[i]+b[j]);
            }
            else{
                break;
            }
        }
    }
    ; --i){
        c[i] = H.top();
        H.pop();
    }
}
int main(){
    n = read(), m = read(), K = read();
    ; i <= n; ++i){
        ; j <= m; ++j){
            a[j] = read();
        }
        sort(a+,a+m+);
        ){
            ; j <= m; ++j){
                b[j] = a[j];
            }
            continue;
        }
        Merge();
        ; j <= m; ++j){
            b[j] = c[j];
        }
    }
    ; i <= K; ++i){
        printf("%d ",b[i]);
    }
    ;
}

[洛谷P1392] 取数的更多相关文章

  1. 洛谷 P1392 取数

    题面 在做这道题前,先要会他的弱化版(实际一模一样,只是愚蠢的洛谷评测级别差了一档(睿智如姬无夜)) ----------------------------------弱化版------------ ...

  2. 洛谷P1392 取数 [堆]

    题目传送门 取数 题目描述 在一个n行m列的数阵中,你须在每一行取一个数(共n个数),并将它们相加得到一个和.对于给定的数阵,请你输出和前k小的取数方法. 输入输出格式 输入格式: 第一行,三个数n, ...

  3. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  4. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  5. 洛谷P1288 取数游戏II

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  6. 洛谷 p1123 取数游戏【dfs】

    题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...

  7. 洛谷 P1123 取数游戏

    题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少. ...

  8. 洛谷——P1123 取数游戏

    P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...

  9. 洛谷P1288 取数游戏II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...

随机推荐

  1. Eureka配置instanceId显示IP

    直接配置: eureka: client: serviceUrl: defaultZone: http://localhost:8761/eureka/ instance: prefer-ip-add ...

  2. TensorFlow实现XOR

    TensorFlow基础 1.概念 TF使用图表示计算任务,图包括数据(Data).流(Flow).图(Graph) 图中节点称为op,一个op获得多个Tensor Tensor为张量,TF中用到的数 ...

  3. 第一册:lesson 117.

    原文:Tommy‘s breakfast. question:What' does she mean by 'change' in the last sentence. When my husband ...

  4. MySQL 笔记整理(14) --count(*)这么慢,我该怎么办?

    笔记记录自林晓斌(丁奇)老师的<MySQL实战45讲> (本篇内图片均来自丁奇老师的讲解,如有侵权,请联系我删除) 14) --count(*)这么慢,我该怎么办? 有时你会发现,随着系统 ...

  5. PyQtdeploy-V2.4 User Guide 中文 (二)

    PyQtdeploy 用户指南 目录 介绍 与V1.0+的差异 作者 证书 安装 部署过程概览 PyQt的演示 构建演示 Android IOS Linux MacOS Windos 构建系统根目录 ...

  6. vue 单文件组件中样式加载

    在写单文件组件时,一般都是把标签.脚本.样式写到一起,这样写个人感觉有点不够简洁,所以就想着把样式分离出去. 采用import加载样式 在局部作用域(scoped)采用@import加载进来的样式文件 ...

  7. React 16.x 新特性思维导图

    React 16版本相对于以前的版本做了很大的改动,下面是我整理的React 16.x 新特性的思维导图文件,欢迎围观和指导:

  8. 小米平板6.0以上系统如何不用Root激活Xposed框架的步骤

    在异常多公司的引流,或业务操作中,大多数需要使用安卓的神一般的Xposed框架,几天前我们公司买来了一批新的小米平板6.0以上系统,大多数都是基于7.0以上版本,大多数不能够获取Root超级权限,虽然 ...

  9. 简单的纯js三级联动

    参考这个  日尼禾尔  二级联动 写了三级联动 <!DOCTYPE html> <html> <head> <meta charset="UTF-8 ...

  10. Redis笔记-Sentinel哨兵模式

    Redis以主从的模式搭建集群后,如果主节点Master挂掉,虽然可以实现将备用节点Slave切换成主节点,但是Redis本身并没有自动监控机制,需要借助Sentinel哨兵模式,实现监控并实现自动切 ...