无法用复杂状态进行转移时改变计算方式;巧妙的整体考虑;压缩空间优化时间

传送门:$>here<$

题意

给出一个n*m矩阵,从每一行选一个数加起来,可以得到一个和。易知总共会有$n^n$个和,输出最小的k个。

数据范围:$n,m \leq 800,k \leq m$

Solution

问题的转化

序列合并问题是这道题的弱化版——也就是在这道题目里规定n=2。这样的问题做法是先分别排序,然后默认a[1]与b[1..n]相加得到的n个和为最小,然后分别用其他的和去更新。由于单调性,a[i]一旦不能满足就立即跳出,可以证明复杂度接近$O(nlog^2n)$

这道题变成了n行,而我们可以将其转化为两行的问题——将前n-1行看做一个子问题。由于保证了k<=m,因此每做完一次就将若干行合并为一行,反复迭代即可。

启示

问题的转化

利用所要求的条件转化问题。尤其是这种非常类似的。

my code

第一行要特判

/*By DennyQi 2019*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
;
const int INF = 0x3f3f3f3f;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
    ; ; register char c = getchar();
    '); c = getchar());
    , c = getchar();
    ) + (x<<) + c - '; return x * w;
}
int n,m,K;
int a[MAXN],b[MAXN],c[MAXN];
priority_queue <int, vector<int>, less<int> > H;
inline void Merge(){
    while(H.size()) H.pop();
    ; i <= m; ++i){
        H.push(a[] + b[i]);
    }
    ; i <= m; ++i){
        ; j <= m; ++j){
            if(a[i]+b[j] < H.top()){
                H.pop();
                H.push(a[i]+b[j]);
            }
            else{
                break;
            }
        }
    }
    ; --i){
        c[i] = H.top();
        H.pop();
    }
}
int main(){
    n = read(), m = read(), K = read();
    ; i <= n; ++i){
        ; j <= m; ++j){
            a[j] = read();
        }
        sort(a+,a+m+);
        ){
            ; j <= m; ++j){
                b[j] = a[j];
            }
            continue;
        }
        Merge();
        ; j <= m; ++j){
            b[j] = c[j];
        }
    }
    ; i <= K; ++i){
        printf("%d ",b[i]);
    }
    ;
}

[洛谷P1392] 取数的更多相关文章

  1. 洛谷 P1392 取数

    题面 在做这道题前,先要会他的弱化版(实际一模一样,只是愚蠢的洛谷评测级别差了一档(睿智如姬无夜)) ----------------------------------弱化版------------ ...

  2. 洛谷P1392 取数 [堆]

    题目传送门 取数 题目描述 在一个n行m列的数阵中,你须在每一行取一个数(共n个数),并将它们相加得到一个和.对于给定的数阵,请你输出和前k小的取数方法. 输入输出格式 输入格式: 第一行,三个数n, ...

  3. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  4. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  5. 洛谷P1288 取数游戏II

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  6. 洛谷 p1123 取数游戏【dfs】

    题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...

  7. 洛谷 P1123 取数游戏

    题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少. ...

  8. 洛谷——P1123 取数游戏

    P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...

  9. 洛谷P1288 取数游戏II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...

随机推荐

  1. TensorRT学习总结

    TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...

  2. DS控件库 在Combobox中嵌入远程桌面

    本示例演示DS开放式下拉列表控件中加入一个RDP远程桌面控件. 先在VS工具箱中添加COM控件Microsoft RDP Client Control,后面的Version版本可以适当高点. 然后将R ...

  3. C# 在PPT中绘制形状(shape)

    概述 本篇文章将介绍C# 在PPT幻灯片中操作形状(shape)的方法.这里主要涉及常规形状,如箭头.矩形.圆形.三角形.多边形.不规则形状等.下面的示例中,可以通过绘制形状,并设置相应格式等.示例包 ...

  4. 查看apk签名 和 keystore 的信息

    原文出处:https://www.jianshu.com/p/90b698002215 1.keytool -printcert -file ***(把apk文件下的META- INF文件夹解压出来, ...

  5. linux 子系统折腾记 (三)

    所以说,英文真是个好东西,很多资料都只有英文版本,要是不懂英文,甚至你不知道这个资料的存在,更别提用蹩脚的翻译软件去翻译了. wsl 的资料:https://docs.microsoft.com/zh ...

  6. Python 经典面试题汇总之基础篇

    基础篇 1:为什么学习Python 公司建议使用Python,然后自己通过百度和向有学过Python的同学了解了Python.Python这门语言,入门比较简单,它简单易学,生态圈比较强大,涉及的地方 ...

  7. github在README.md中插入图片

    例子 ![image](https://raw.githubusercontent.com/sunday123/Pendant/master/1.PNG)

  8. 从0开始的Python学习015输入与输出

    简介 在之前的编程中,我们的信息打印,数据的展示都是在控制台(命令行)直接输出的,信息都是一次性的没有办法复用和保存以便下次查看,今天我们将学习Python的输入输出,解决以上问题. 复习 得到输入用 ...

  9. LNMP环境下部署搭建wordpress

    1. 下载WordPress安装包 访问官方网站https://cn.wordpress.org/ 点击Download.tar.gz下载linux平台安装包 2. 安装软件 2.1.上传安装包 使用 ...

  10. 【学习记录】第一章 数据库设计-《SQL Server数据库设计和开发基础篇视频课程》

    一.课程笔记 1.1  软件开发周期 (1)需求分析阶段 分析客户的业务和数据处理需求. (2)概要设计阶段 设计数据库的E-R模型图,确认需求信息的正确和完整. /* E-R图:实体-关系图(Ent ...