Diamond-square 算法是一种能够用于生成噪声的算法,现在我们考虑这个算法的一个变种。

你有一个 2^n\times 2^n2​n​​×2​n​​ 的网格,一共有 (2^n+1)^2(2​n​​+1)​2​​个格点,现在给定四个角的初始权值以及一个值 xx。

整个算法由若干个 diamond step 和 square setp 交替进行来构成。

在一个 diamond step 或者 square step 中,会有若干个之前没有被赋值的点被赋值,其值等于之前的某四个或三个点的值的和加上 xx。

xx 的值每进行完一次 diamond step 和一次 square step 之后就会变成原来的二倍。

而具体的过程用图来描述如下,在样例解释中可以看到更详细的文字解释:

现在我们想知道整个矩阵最后的值的和模 10^9+710​9​​+7 等于多少。

输入格式

一行 66 个整数,分别代表 nn,左上角权值,右上角权值,左下角权值,右下角权值,xx 的初始值。

保证初始权值和 xx 都在 [0,10^9+7)[0,10​9​​+7)之内。

输出格式

一行一个整数,代表矩阵内所有元素的和模 10^9+710​9​​+7 的值。

数据规模

样例解释

最终矩阵如下:

 
 
 
 
 
1
0    446   112   590   24    590   112   446   0
2
456  326   976   446   1142  446   976   326   456
3
122  1046  84    1346  218   1346  84    1046  122
4
670  506   1446  590   1428  590   1446  506   670
5
34   1382  258   1578  22    1578  258   1382  34
6
780  576   1656  700   1728  700   1656  576   780
7
162  1326  114   1756  298   1756  114   1326  162
8
646  466   1396  636   1622  636   1396  466   646
9
10   656   172   860   44    860   172   656   10
 
 

如题面图,四个角赋为初始值,随后开始执行算法:

Diamond step:中点被赋值为四个角的和 +x+x。

Square step:四条边的中点被赋值为所在边的两个端点与中点的和 +x+x。

xx 变为原来的两倍。

Diamond step:把整个矩阵分成四个等大小的正方形,这四个正方形的中点被分别赋值为正方形的四角的和 +x+x。

Square step:把整个矩阵分成四个大小相等的正方形,对于每个正方形的每一条边的中点,把他赋值为其向上下左右四个方向找到的第一个已经被赋值的点的和 +x+x(对于整个矩形的边界上的点,会有一个方向不存在,那么这个点被赋值为另外三个方向的和 +x+x)。

xx 变为原来的两倍。

所有点都被赋值,算法结束。

忽略每行输出的末尾多余空格

样例输入

3 0 0 10 10 2

样例输出

55178
不多BB,直接模拟就行了O(4n)
要注意尽可能少枚举多余的状态,如果变成了O(n*4n)就会超时
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol Mod=;
lol pw[],a[][],d,n,ans;
int main()
{int i,j,flag,k;
cin>>n;
pw[]=;
for (i=;i<=n;i++)
pw[i]=pw[i-]*;
cin>>a[][]>>a[][pw[n]]>>a[pw[n]][]>>a[pw[n]][pw[n]]>>d;
for (i=n;i>=;i--,(d*=)%=Mod)
{
for (j=;j<pw[n];j+=pw[i])
{
for (k=;k<pw[n];k+=pw[i])
{
int x=j+pw[i-],y=k+pw[i-];
a[x][y]=a[j][k]+a[j+pw[i]][k]+a[j][k+pw[i]]+a[j+pw[i]][k+pw[i]]+d;
a[x][y]%=Mod;
}
}
flag=;
for (j=;j<=pw[n];j+=pw[i-],flag^=)
{
for (k=flag*pw[i-];k<=pw[n];k+=pw[i])
{
if (j-pw[i-]>=)
a[j][k]+=a[j-pw[i-]][k];
if (j+pw[i-]<=pw[n])
a[j][k]+=a[j+pw[i-]][k];
if (k-pw[i-]>=)
a[j][k]+=a[j][k-pw[i-]];
if (k+pw[i-]<=pw[n])
a[j][k]+=a[j][k+pw[i-]];
a[j][k]+=d;
a[j][k]%=Mod;
}
}
}
for (i=;i<=pw[n];i++)
for (j=;j<=pw[n];j++)
ans+=a[i][j],ans%=Mod;
cout<<ans;
}

计蒜客NOIP模拟赛6 D1T1Diamond-square的更多相关文章

  1. 计蒜客NOIP模拟赛4 D2T1 鬼脚图

    鬼脚图,又称画鬼脚,在日本称作阿弥陀签,是一种经典游戏,也是一种简易的决策方法,常常用来抽签或决定分配组合. 下图就是一张鬼脚图,其包含若干条竖线和若干条横线.请注意,横线只能水平连接相邻的两条竖线, ...

  2. 计蒜客 NOIP模拟赛(3) D1T1火山喷发

    火山喷发对所有附近的生物具有毁灭性的影响.在本题中,我们希望用数值来模拟这一过程. 在环境里有 nnn 个生物分别具有 A1,A2,⋯,An​​点生命值,一次火山喷发总计 M轮,每轮造成 1点伤害,等 ...

  3. 计蒜客NOIP模拟赛(2) D1T1邻家男孩

    凡是一个具有领导力的孩子.现实生活中他特别喜欢玩一个叫做 UNO 的纸牌游戏,他也总是带着其他小朋友一起玩,然后战胜他们.慢慢地,他厌倦了胜利,于是准备发明一种新的双人纸牌游戏. 初始时,每个人手中都 ...

  4. 计蒜客NOIP模拟赛5 D1T1 机智的 AmyZhi

    那年一个雨季,AmyZhi 在校门外弯身买参考书. 这时 SiriusRen 走过来,一言不合甩给她一道“自认为”很难的题: --------------- 给你一个数字 NN(NN 的范围是 11  ...

  5. 计蒜客NOIP模拟赛4 D2T2 跑步爱天天

    YOUSIKI 在 noip2016 的一道<天天爱跑步>的题爆零后,潜心研究树上问题,成为了一代大师,于是皮皮妖为了测验他,出了一道题,名曰<跑步爱天天>. 有一个以 1 为 ...

  6. 计蒜客NOIP模拟赛4 D1T3 小X的佛光

    小 X 是远近闻名的学佛,平日里最喜欢做的事就是蒸发学水. 小 X 所在的城市 X 城是一个含有 N 个节点的无向图,同时,由于 X 国是一个发展中国家,为了节约城市建设的经费,X 国首相在建造 X ...

  7. 计蒜客NOIP模拟赛4 D1T2小X的密室

    小 X 正困在一个密室里,他希望尽快逃出密室. 密室中有 N 个房间,初始时,小 X 在 1 号房间,而出口在 N 号房间. 密室的每一个房间中可能有着一些钥匙和一些传送门,一个传送门会单向地创造一条 ...

  8. 计蒜客NOIP模拟赛4 D1T1 小X的质数

    小 X 是一位热爱数学的男孩子,在茫茫的数字中,他对质数更有一种独特的情感.小 X 认为,质数是一切自然数起源的地方. 在小 X 的认知里,质数是除了本身和 1以外,没有其他因数的数字. 但由于小 X ...

  9. 计蒜客NOIP模拟赛D2T3 数三角形

    刚刚上高中的洁洁在学习组合数学的过程中遇到一道麻烦的题目,她希望你能帮助她解决.给定一张无向完全图 G,其中大部分边被染成蓝色,但也有一些边被染成红色或者绿色.现在,洁洁需要给这张图的多样性进行打分. ...

随机推荐

  1. Access数据库跨库查询及记录集区分

    医疗设备软件一般都是单机软件,如果是Windows平台,常会选择Access数据库存储结构化数据,因为他轻量,便于部署.然而随着医疗信息化的发展,医生希望对多台单机设备的数据进行管理,采用网络数据库当 ...

  2. 听翁恺老师mooc笔记(6)--指针运算

    指针值加1就是将指针值加上sizeof(指针所指变量的类型) 1+1=2,那么指针加1是加上了1这个数字吗?试一下,在代码中定义了char数组,char也是整数,数组名是ac,ac中有10个元素,0- ...

  3. Beta阶段报告

    Beta版测试报告 1. 在测试过程中总共发现了多少Bug?每个类别的Bug分别为多少个? BUG名 修复的BUG 不能重现的BUG 非BUG 没能力修复的BUG 下个版本修复 url乱码 √ 手机端 ...

  4. GIT入门笔记(7)- 修改文件并向版本库提交

    1.修改文件vi readme.txt git status 发现被修改的文件列表git diff readme.txt 2.git add readme.txt git status  --注意gi ...

  5. SpringCloud的部署模型

    http://www.th7.cn/Program/java/201608/919853.shtml

  6. 谈谈自己的理解:python中闭包,闭包的实质

    闭包这个概念好难理解,身边朋友们好多都稀里糊涂的,稀里糊涂的林老冷希望写下这篇文章能够对稀里糊涂的伙伴们有一些帮助~ 请大家跟我理解一下,如果在一个函数的内部定义了另一个函数,外部的我们叫他外函数,内 ...

  7. Android 自定义控件高度设置onMeasure方法

    最近使用hellocharts需要表格横向显示,而activity需要竖屏显示,在旋转以后,默认宽度为不超过屏幕宽度,则一直无法显示全控件. 此时需要修改onMeasure方法,这个方法是用来控制控件 ...

  8. centos7搭建nexus maven私服(二)

    本文主要补充两个主题: 1.手动更新索引 2.通过maven客户端发布本地jar包到nexus 先说第一个主题: 由于maven中央仓库汇集了全世界绝大多数的组件,所以它的索引库非常庞大,在我们右击仓 ...

  9. mysql 存储过程 实现数据同步

    数据库 表 发生变化,需要把2.0的表数据 同步到3.0库中去: -- 同步数据存储过程执行 -- 更新留言旧表数据到新表数据中 /*DEFINER:Vector*/ drop procedure i ...

  10. awk、变量、运算符、if多分支

    awk.变量.运算符.if多分支 awk: 语法 awk [options] 'commands' files option -F 定义字段分隔符,默认的分隔符是连续的空格或制表符 使用option中 ...