题意:指定v1,v2,要求计算出在t1,t2天内从v1->v2的走法

思路:可以知道由矩阵求,即将其建图A,求矩阵A^t1 + ...... + A^t2.   A^n后,/*A.xmap[v1][v2]即是从v1到v2要n步

所以先预处理出A^1 -A^10000的情况,后面再注意下细节,计算即可.

(每条道路走需要花一天的时间,且不能在某个城市停留,且t1=0时的走法数为0)

开始以为只要t1 = 0就输出0,结果不停WA,一直对照别人的代码- -

结果偶然发现这个特例,它喵的我也是醉了,才发现是题意理解错了,好惨...Orz

  1. 特例:
  2. Input:
  3. 1
  4. 1 1
  5. 1
  6. 1 1 0 1
  7. Ouput:
  8. 1
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<functional>
using namespace std;
typedef long long ll;
const int mod=2008;
const int maxn=5e5;
map<int,int>has;
struct Maxtri
{
int xmap[30][30];
};
int siz;
Maxtri mat[10005]; Maxtri Mul(Maxtri &a,Maxtri &b)
{
Maxtri c;
for(int i=0; i<siz; i++)
{
for(int j=0; j<siz; j++)
{
c.xmap[i][j]=0;
for(int k=0; k<siz; k++)
{
c.xmap[i][j]+=a.xmap[i][k]*b.xmap[k][j];
c.xmap[i][j]%=mod;
}
}
}
return c;
} int main()
{
int n,u,v,k; int v1,v2,t1,t2;
while(scanf("%d",&n) != EOF)
{
siz = 0;
memset(mat[0].xmap,0,sizeof(mat[0].xmap));
has.clear();
for(int i = 1; i <= n; i++)
{
scanf("%d%d",&u,&v);
if(has.find(u)==has.end())
{
has[u]=siz++;
}
if(has.find(v)==has.end())
{
has[v]=siz++;
}
mat[0].xmap[has[u]][has[v]] ++;
} for(int i=1; i<10001; i++)
mat[i]=Mul(mat[i-1],mat[0]);
scanf("%d",&k);
while(k--)
{
scanf("%d%d%d%d",&v1,&v2,&t1,&t2);
if(has.find(v1)==has.end()||has.find(v2)==has.end() || (!t1 && !t2))
{
printf("0\n");
continue;
}
if(t1 > t2)
swap(t1,t2); int ans=0;
for(int i=t1-1; i<t2; i++)
{
if(i == -1)
continue;
ans= (ans + mat[i].xmap[has[v1]][has[v2]])%mod;
}
printf("%d\n",ans%mod);
}
}
return 0;
}

  

hdu 2254(矩阵)的更多相关文章

  1. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  2. HDU 2254

    http://acm.hdu.edu.cn/showproblem.php?pid=2254 矩阵乘法两个经典问题的综合题,还要离散化和处理边界,好题啊好题 题意容易理解错,每一天是独立的,所以根据加 ...

  3. hdu 2254 奥运

    点击打开hdu 2254 思路: 矩阵乘法 分析: 1 题目给定一个有向图,要求t1-t2天内v1-v2的路径的个数 2 根据离散数学里面的可达矩阵的性质,我们知道一个有向图的邻接矩阵的前n次幂的和即 ...

  4. hdu 4291 矩阵幂 循环节

    http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109  ...

  5. HDU 2254 奥运(矩阵+二分等比求和)

    奥运 [题目链接]奥运 [题目类型]矩阵+二分等比求和 &题解: 首先离散化城市,之后就是矩阵快速幂了,但让求的是A^(t1)+A^(t1+1)+...+A^(t2),我先想的是打表,但时间真 ...

  6. 【矩阵快速幂】之奥运 hdu 2254

    1.城市的编号不是从0到n-1,而是随便的一个数字,需要离散化否则不能存相关信息 2.城市数不超过30,也就是说我的方法开矩阵不超过60,但是我残念的一开始以为最多可能有20000个不同城市    血 ...

  7. HDU 2254 奥运(数论+矩阵)

    题目中文的不解释啊. .. 须要注意的就是:离散数学中,有向图的邻接矩阵A表示全部点之间路径长度为1的路径数量,A^n则表示路径长度为n的路径数量.故须要求某两点在(A^t1)~(A^t2)的路径数量 ...

  8. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  9. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

随机推荐

  1. hi-nginx-1.4.2发布,多项重要更新

    支持多种编程语言混合开发web应用的通用服务器hi-nginx-1.4.2已经发布了. 此次发布包含多项重要更新: 支持python2和3,通过编译选项--with-http-hi-python-ve ...

  2. SENet

     \(\bf F_{tr}\) 为标准卷积操作 \(\bf F_{sq}\) 为 Global Average Pooling \(\bf F_{ex}\) 为两层全连接网络(可以看做两个1×1卷积 ...

  3. WebDriverException : Missing 'type' parameter

    下载最新的geckodriver即可 v0.17.0 Releases · mozilla/geckodriver · GitHubhttps://github.com/mozilla/geckodr ...

  4. mysql数据库的三范式的设计与理解

    一般的数据库设计都需要满足三范式,这是最基本的要求的,最高达到6NF,但是一般情况下3NF达到了就可以 一:1NF一范式的理解: 1NF是关系型数据库中的最基本要求,就是要求记录的属性是原子性,不可分 ...

  5. 看到一个对CAP简单的解释

    一个分布式系统里面,节点组成的网络本来应该是连通的.然而可能因为一些故障,使得有些节点之间不连通了,整个网络就分成了几块区域.数据就散布在了这些不连通的区域中.这就叫分区.当你一个数据项只在一个节点中 ...

  6. 工频相位无线同步模块PSYN5000系列在高压设备状态检测和局部放电故障定位的应用方案

    关键词: PSYN5000,无线同步模块,工频相位,局部放电,在线监测,高压设备,设备状态,故障定位. 前言: 在电力监测领域,出于方便和安全考虑,有些系统不得不采用无线通信的方式,在这样一个无线通信 ...

  7. 分贝块---dBblock

    分贝,用英语来表达的话,是decibel,是量度两个相同单位之数量比例的计量单位,主要用于度量声音强度,常用dB表示. 块,block,在百度百科中,指数据库中的最小存储和处理单位,包含块本身的头信息 ...

  8. SpringMvc(4-1)Spring MVC 中的 forward 和 redirect

    Spring MVC 中,我们在返回逻辑视图时,框架会通过 viewResolver 来解析得到具体的 View,然后向浏览器渲染.通过配置,我们配置某个 ViewResolver 如下: <b ...

  9. gradle入门(1-4)多项目构建实战

    一.多项目构建 1.多项目构建概念 尽管我们可以仅使用单个组件来创建可工作的应用程序,但有时候更广泛的做法是将应用程序划分为多个更小的模块. 因为这是一个非常普遍的需求,因此每个成熟的构建工具都必须支 ...

  10. java将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。

    首先我们的算法是:例如 输入的是 90 1.找到90的最小公约数(1除外)是 2 2.然后把公约数 2 输出 3.接着用 90 / 2 = 45 (如果这里是素数,就结束,否则继续找最小公约数) 4. ...