bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 774 Solved: 411
[Submit][Status][Discuss]
Description
有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次。如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值。
给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵。
Input
输入第一行包含两个整数n和m(1<=n<=4, 1<=m<=7),即行数和列数。以下n行每行m个字符,其中“X”表示局部极小值,“.”表示非局部极小值。
Output
输出仅一行,为可能的矩阵总数除以12345678的余数。
Sample Input
3 2
X.
..
.X
Sample Output
60
容斥,推一推可以得到X的个数不超过8个(虽然我不知道是怎么推的)
枚举,从小到大填数,状压dp可以计算出对于此种图的填数方案
用cnt[s]表示状态s下可以填数的方案(包括之前已经填过的X但不包括没填的X)
f[i][s]转移就得到啦(水一波)
这样我们可以保证X的位置一定是周围最小的,但却不能保证其他位置不会出现多余的'X'
于是我们dfs出每一个可以为X的地方,容斥一下就好啦
推荐blog
http://blog.csdn.net/popoqqq/article/details/48028773
取模有毒
a+=b;if(a>=mod)a-=mod;
如果b是负数的话..就炸了!!
调了1h..
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define mod 12345678
#define ll long long
using namespace std;
int n,m,tp,cnt[<<],ok[][];
int dx[]={,,,-,,-,,-,};
int dy[]={,-,,,,-,-,,};
char mp[][];ll ans,f[][<<];
struct node{int x,y;}p[];
int dp(){
memset(cnt,,sizeof(cnt));
memset(f,,sizeof(f));tp=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(mp[i][j]=='X')
p[++tp]=(node){i,j};
for(int st=;st<(<<tp);st++){
memset(ok,,sizeof(ok));
for(int j=;j<=tp;j++)
if(!(st&(<<(j-))))ok[p[j].x][p[j].y]=;
for(int i=;i<=n;i++)
for(int k,j=;j<=m;j++){
for(k=;k<;k++)
if(ok[i+dx[k]][j+dy[k]])break;
if(k==)cnt[st]++;
}
}
f[][]=;
for(int i=;i<=n*m;i++)
for(int st=;st<(<<tp);st++){
(f[i][st]+=f[i-][st]*max(,cnt[st]-i+))%=mod;
for(int k=;k<=tp;k++)
if((<<(k-))&st)(f[i][st]+=f[i-][st^(<<(k-))])%=mod;
}
return f[n*m][(<<tp)-];
}
void dfs(int x,int y,int c){
int t;
if(x==n+){
(ans+=dp()*(c&?-:))%=mod;
return;
}
if(y==m)dfs(x+,,c);
else dfs(x,y+,c);
for(t=;t<;t++)if(mp[dx[t]+x][dy[t]+y]=='X')break;
if(t<)return;
mp[x][y]='X';
if(y==m)dfs(x+,,c+);
else dfs(x,y+,c+);
mp[x][y]='.';
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%s",mp[i]+);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(mp[i][j]=='X')
for(int k=;k<;k++){
int nx=i+dx[k],ny=j+dy[k];
if(mp[nx][ny]=='X'){puts("");return ;}
}
dfs(,,);
ans<?ans+=mod:;
cout<<ans;
return ;
}
bzoj2669[cqoi2012]局部极小值 容斥+状压dp的更多相关文章
- P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...
- [BZOJ2669][CQOI2012]局部最小值(容斥+状压DP)
发现最多有8个限制位置,可以以此为基础DP和容斥. $f_{i,j}=f_{i-1,j}\times (cnt_j-i+1)+\sum_{k\subset j} f_{i-1,k}$ $cnt_j$表 ...
- ARC 093 F Dark Horse 容斥 状压dp 组合计数
LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...
- bzoj3812 主旋律 容斥+状压 DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要 ...
- Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)
题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 ...
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...
- 洛谷$P$3160 局部极小值 $[CQOI2012]$ 状压$dp$
正解:状压$dp$ 解题报告: 传送门! 什么神仙题昂,,,反正我是没有想到$dp$的呢$kk$,,,还是太菜了$QAQ$ 首先看数据范围,一个4×7的方格,不难想到最多有8个局部极小值,过于显然懒得 ...
- HDU5731 Solid Dominoes Tilings 状压dp+状压容斥
题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...
随机推荐
- Java ftp 上传文件和下载文件
今天同事问我一个ftp 上传文件和下载文件功能应该怎么做,当时有点懵逼,毕竟我也是第一次,然后装了个逼,在网上找了一段代码发给同事,叫他调试一下.结果悲剧了,运行不通过.(装逼失败) 我找的文章链接: ...
- 坑爹了多少年的html元素垂直居中问题
原文章:https://www.w3cplus.com/css3/a-guide-to-flexbox.html 如果你的元素有固定高度的话 父元素用display: flex;height:100p ...
- SQL Server 实现类似C#中 PadLeft功能
USE [Test] GO SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO --@column 表示字段或者常量,@paddingChar 表示 补位 ...
- Extensions in UWP Community Toolkit - FrameworkElement Extensions
概述 UWP Community Toolkit Extensions 中有一个为FrameworkElement 提供的扩展 - FrameworkElement Extensions,本篇我们结合 ...
- SpringCloud的微服务网关:zuul(实践)
Zuul的主要功能是路由和过滤器.路由功能是微服务的一部分,比如/api/user映射到user服务,/api/shop映射到shop服务.zuul实现了负载均衡. zuul有以下功能: Authen ...
- java.lang.IllegalAccessError: tried to access method org.apache.poi.util.POILogger.log from class org.apache.poi.openxml4j.opc.ZipPackage
代码说简单也简单,说复杂那还真是寸步难行. 之前好好的excel导出功能,本地启动调试的时候突然就不行了,一直报上面的错. 一直在本地折腾了半天,去测试环境上看,又是好的,可以正常导出excel. 搜 ...
- power designer 连接mysql提示“connection test failed”
本机环境: win10 64位 jdk8 64位 问题: 测试连接时,总是提示 根据网上搜索: 根源在于:PowerDesigner based on 32 bit JVM kernel 参考: ht ...
- Menu-多级菜单
#menu多级菜单 from tkinter import * master = Tk() def callback(): print('我被调用了--') menubar=Menu(master)# ...
- day3 自定义指令详解
在angular中,Directive,自定义指令的学习,可以更好的理解angular指令的原理,当angular的指令不能满足你的需求的时候,嘿嘿,你就可以来看看这篇文章,自定义自己的指令,可以满足 ...
- ps图层的基本使用
图层的使用 图层的基本使用一:复制,选择多个,背景图上添加图片,同时移动多个图层 复制图层:图层里的内容位置会变化,而拷贝的图层,图层里的位置不变,跟原来的图层一样 选择多个图层:shift选中多个图 ...