Uva 437 巴比伦塔 && UVA10003
要求底面严格小于它下方立方体的长宽,求出最高情况,一块石头可以多次使用
用结构体记录一块石头的三种放置情况,按面积排序。
dp[i] = max(dp[i],dp[j] + block[i].hight); 当选择到i时,与前几个比较,找出当前情况下的高度最高可能
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; struct node
{
int x;
int y;
int hight;
}block[100];
int dp[100];
bool cmp(node a,node b)
{
return a.x*a.y < b.x*b.y;
} int main()
{
int n,a,b,c,cas = 1;
while(scanf("%d",&n) && n)
{
int tmp = 1;
for(int i = 0;i < n;i++)
{
scanf("%d%d%d",&a,&b,&c);
block[tmp].x = a;
block[tmp].y = b;
block[tmp++].hight = c;
block[tmp].x = c;
block[tmp].y = a;
block[tmp++].hight = b;
block[tmp].x = b;
block[tmp].y = c;
block[tmp++].hight = a;
}
sort(block+1,block+tmp,cmp);
memset(dp,0,sizeof(dp));
for(int i = 1;i < tmp;i++)
{
dp[i] = block[i].hight;
for(int j = 1;j < i;j++)
{
if(((block[i].x>block[j].x)&&(block[i].y>block[j].y))||((block[i].x>block[j].y)&&(block[i].y>block[j].x)))
dp[i] = max(dp[i],dp[j] + block[i].hight);
}
}
int maxn=0;
for(int i = 1;i < tmp;i++)
if(dp[i] > maxn)
maxn = dp[i];
printf("Case %d: maximum height = %d\n",cas++,maxn);
}
return 0;
}</span> 有一根长10公尺的木棍必须在第2、4、7公尺的地方切割。这个时候就有几种选择了。你可以选择先切2公尺的地方,然后切4公尺的地方,最后切7公尺的地方。这样的选择其成本为:10+8+6=24。因为第一次切时木棍长10公尺,第二次切时木棍长8公尺,第三次切时木棍长6公尺。但是如果你选择先切4公尺的地方,然后切2公尺的地方,最后切7公尺的地方,其成本为:10+4+6=20,这成本就是一个较好的选择。
你的老板相信你的电脑能力一定可以找出切割一木棍所需最小的成本。
p[j] - p[i]代表第一刀的费用,切完后吧它变成i~k 和 k~j 两个部分
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAX 0x3f3f3f3f using namespace std; int len;
int d[50][50];
int p[51]; int main()
{
int n;
while(scanf("%d",&n) && n)
{
int m;
scanf("%d",&m);
for(int i=1; i <= m; i++)
scanf("%d",&p[i]);
p[0] = 0,p[m+1] = n;
memset(d,0,sizeof(d)); for(int l = 2; l <= m+1; l++)
for(int i = 0; i + l <= m+1; i++)
{
int j = i + l;
d[i][j] = MAX;
for(int k = i+1; k < j; k++)
{
d[i][j] = min(d[i][j],d[i][k]+d[k][j]+p[j]-p[i]);
}
}
printf("The minimum cutting is ");
printf("%d.\n",d[0][m+1]);
}
return 0;
}
Uva 437 巴比伦塔 && UVA10003的更多相关文章
- uva 437 巴比伦塔(DAG上dp)
巴比伦塔 紫书P269 看完紫书,终于可以自己写一个dp了 :) [题目链接]巴比伦塔 [题目类型]DAG上dp &题意: 有n种立方体 n<=30,每种有无穷个,要求选一些立方体摞成一 ...
- UVa 437 巴比伦塔
https://vjudge.net/problem/UVA-437 这道题和HDU的Monkey and Banana完全一样. #include<iostream> #include& ...
- UVA 437 巴比伦塔 【DAG上DP/LIS变形】
[链接]:https://cn.vjudge.net/problem/UVA-437 [题意]:给你n个立方体,让你以长宽为底,一个个搭起来(下面的立方体的长和宽必须大于上面的长和宽)求能得到的最长高 ...
- UVA 437 十九 The Tower of Babylon
The Tower of Babylon Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Subm ...
- uva 437,巴比伦塔
题目链接:https://uva.onlinejudge.org/external/4/437.pdf 题意:巴比伦塔: 给出n种立方体,一个立方体能放到另一个立方体上,必须满足,底面一定要小于下面的 ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- 【UVA 437】The Tower of Babylon(记忆化搜索写法)
[题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
随机推荐
- 201621123031 《Java程序设计》第10周学习总结
作业10-异常 1.本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 1.捕捉异常 Java中的异常捕获结构由try.catch和finally三个部分组成.其中try语句 ...
- vim配置之taglist插件安装
上次说了不带插件的vim配置,今天补充两个,来日方长,不定期更新: 首先看一个路径: 下载ctags,将其中的ctags.exe复制到上边目录下边: 地址:https://sourceforge.ne ...
- pandas 数据分析使用
https://github.com/Erick-LONG/data_analysis/blob/master/%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%20%E9%8 ...
- linux服务器操作系统,在相同环境下,哪个做lamp服务器更稳定点?哪个版本更稳定?
随着国内WEB服务越来越多,如何才能选择一个合适的linux服务器操作系统?在国内用的最多的好像是红帽子系列也就是red hat系列,但有些版本缺乏稳定性.新手在选择操作系统的时候最好只用偶数版本,还 ...
- bzoj千题计划276:bzoj4515: [Sdoi2016]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=4515 把lca带进式子,得到新的式子 然后就是 维护树上一次函数取min 一个调了一下午的错误: 当 ...
- Vim 游戏 2048
给大家介绍一款可以在Vim里面玩的游戏 vim2048. 界面如图: 操作非常简单,可以用 hjkl 或者 上下左右方向键移动 项目开源地址为: https://github.com/wsdjeg/v ...
- RocketMQ(二):RPC通讯
匠心零度 转载请注明原创出处,谢谢! RocketMQ网络部署图 NameServer:在系统中是做命名服务,更新和发现 broker服务. Broker-Master:broker 消息主机服务器. ...
- 深度学习之 mnist 手写数字识别
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...
- redis入门(05)redis的key命令
一.什么是redis键命令 Redis 键(key):Redis 键命令用于管理 redis 的键. Redis 键命令的基本语法: redis 127.0.0.1:6379> COMMAND ...
- 访问远程的docker
docker version vim /etc/default/docker DOCKER_OPTS=" -Label name=dockerserver2" docke ...