[BZOJ]1019 汉诺塔(SHOI2008)
找规律成功次数++。
Description
汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体。

对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所移动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计算按照上述策略操作汉诺塔移动所需要的步骤数。
Input
输入有两行。第一行为一个整数n,代表盘子的个数。第二行是一串大写的ABC字符,代表六种操作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。
Output
只需输出一个数,这个数表示移动的次数。
Sample Input
3
AB BC CA BA CB AC
Sample Output
7
HINT
1≤n≤30,保证答案不会超过10^18。
Solution
先来说说DP(实际上是递推)的做法。
由于操作序列的优先级是固定的,那么对于每种操作序列,它的移动自始至终都是唯一的。所以我们称之为递推。
Hanoi问题还有一个经典性质就是,它的整个过程是可以用递归实现的。
用f[i][j]表示前i小的盘子现在全部堆叠在第j座塔上,把这i个盘子全部移到另一座塔上需要的步数。
不管这i个盘子下面还有没有盘子,f[i][j]是固定的(显然很好证明)。这就可以看出这个问题有很好的子任务性。
所以我们依然以上面提到的f[i][j]设计状态,顺便记录g[i][j]为这i个盘子从第j座塔移到了哪一座塔。
接着就可以愉快地考虑转移了:
首先操作序列是固定的,f[1][j]和g[1][j]都可以确定。
当i>1时,我们分类讨论一下。
先把i-1个盘子从j用f[i-1][j]的步数移到g[i-1][j],然后第i个盘子就只能够移到剩下的那座塔,设这座塔为k。
然后要做的事是把位于g[i-1][j]的i-1个盘子移到k上。
如果g[i-1][g[i-1][j]]=k,那么万事大吉,直接花费f[i-1][g[i-1][j]]的步数完成转移;
如果g[i-1][g[i-1][j]]≠k,那么它只能等于j,无奈之下先把这i-1个盘子先移到j,
然后第i个盘子又只能够从k移到g[i-1][j],由于g[i-1][j]=g[i-1][j],这下可以放心地把这i-1个盘子放到第i个盘子上了。
总的转移方程为:
。
然而小C刚开始做这题的的时候是没啥头绪的,所以开始打表找规律。
打表之前,有一个显而易见的结论:
每次移动的起点总是确定的,而终点可能确定也可能不确定。
就拿n=3,“AB BC CB AC BA CA”为例:
第一步,起点只能为“A”,终点可以是“B”、“C”,因为“AB”在“AC”前面,所以从把盘子从“A”挪到“B”→{2,3}{1}{};
第二步,起点只能为“A”,终点只能为“C”→{3}{1}{2};
第三步,起点只能为“B”,终点可以是“A”、“C”,“BC”在“BA”前面→{3}{}{1,2};
第四步,起点只能为“A”,终点只能为“B”→{}{3}{1,2};
第五步,起点只能为“C”,终点只能为“A”、“B”,“CB”在“CA”前面→{}{1,3}{2}……
注意第五步本来的最优走法是“CA”,而走“CB”导致最终步数为9而不是7。
所以能够影响答案的只有“AB”与“AC”之间,“BA”与“BC”之间,“CA”与“CB”之间的相对位置关系。
又由于“B”和“C”本质上是相同的,“AB”和“AC”本质上也是相同的,所以当n确定时,答案不会超过4种。
实际上,小C打表出来的答案只有3种。而且这3种的步数还分别是关于n的一阶递推式!
结论如下:f[1]=1,假设“AX”在“AY”前面。
若“XA”在“XY”前面,递推式为f[x]=f[x-1]*3+2;
若“XY”在“XA”前面且“YX”在“YA”前面,递推式为f[x]=f[x-1]*3;
若“XY”在“XA”前面且“YA”在“YX”前面,递推式为f[x]=f[x-1]*2+1。
小C也只能推导到这了,至于为什么是递推式,网络上其他题解也有证明。
但至于为什么是这几个递推式,就有待研究了,小C也不会证明,读者如有想法可以发表评论或是联系小C。
DP法:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MN 35
#define ll long long
using namespace std;
char c[];
ll f[MN][];
int g[MN][];
int n; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,x,y,z;
n=read();
for (i=;i<=;++i)
{
scanf("%s",c);
if (!g[][c[]-'A'+]) g[][c[]-'A'+]=c[]-'A'+;
}
f[][]=f[][]=f[][]=;
for (i=;i<=n;++i)
for (x=;x<=;++x)
{
y=g[i-][x]; z=-x-y;
if (g[i-][y]==z) f[i][x]=f[i-][x]+f[i-][y]+,g[i][x]=z;
else f[i][x]=f[i-][x]*+f[i-][y]+,g[i][x]=y;
}
printf("%lld",f[n][]);
}
观察找规律法:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
ll ans;
int n,mov[];
char a[][]; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i;
n=read();
for (i=;i<;++i) scanf("%s",a[i]);
for (i=;i>=;--i) mov[a[i][]-'A']=a[i][]-'A';
ans=;
if (mov[mov[]]==) {for (i=;i<=n;++i) ans=ans*+;}
else if (mov[mov[mov[]]]==mov[]) {for (i=;i<=n;++i) ans=ans*;}
else {for (i=;i<=n;++i) ans=ans*+;}
printf("%lld",ans);
}
Last Word
有一次通过自己瞎搞找出规律的经历还是很赛艇的。
题目中操作的720种排列方式明摆着就在告诉你,来打表找规律吧~
不过递推的方法也算让小C知道了Hanoi的一个经典性质。
[BZOJ]1019 汉诺塔(SHOI2008)的更多相关文章
- BZOJ 1019 汉诺塔
Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操 ...
- BZOJ_1019_[SHOI2008]_汉诺塔_(DP)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1019 汉诺塔游戏,但是有移动优先级,在不违反原有规则的情况下,给定优先移动目标.求完成游戏所需 ...
- 【BZOJ】【1019】【SHOI2008】汉诺塔
递推/DP 类似普通汉诺塔的一个递推(模拟?$10^{18}$没法模拟吧…… 题解:http://blog.csdn.net/regina8023/article/details/43016813 因 ...
- 【BZOJ 1019】【SHOI2008】汉诺塔(待定系数法递推)
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 559 Solved: 341[Submit][Status] ...
- BZOJ 1019: [SHOI2008]汉诺塔( dp )
dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...
- 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)
1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...
- BZOJ 1019: [SHOI2008]汉诺塔
Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...
- 【BZOJ】1019: [SHOI2008]汉诺塔
http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...
- 【BZOJ 1019】 [SHOI2008]汉诺塔
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1019 [题意] [题解] 这个题解讲得很清楚了 http://blog.sina.co ...
随机推荐
- vim配置之taglist插件安装
上次说了不带插件的vim配置,今天补充两个,来日方长,不定期更新: 首先看一个路径: 下载ctags,将其中的ctags.exe复制到上边目录下边: 地址:https://sourceforge.ne ...
- 实验二Java面向对象程序设计实验报告(2)
实验二 Java面向对象程序设计 实验概述: 课程:程序设计与数据结构 班级:1623班 姓名: 邢天岳 学号:2309 指导老师:娄老师 王老师 实验日期:2017.4.16 实验名称: Java面 ...
- RESTful三问
我觉得学习一个技术,其实就是要弄明白三件事情:是什么(what),为什么(why),怎么用(how).正是所谓的三W方法. 所以打算总结一个"三问"系列.为了自己学习,也分享给别人 ...
- 推荐net开发cad入门阅读代码片段
转载自 Cad人生 的博客 链接:http://www.cnblogs.com/cadlife/articles/2668158.html 内容粘贴如下,小伙伴们可以看看哦. using Syst ...
- DBA 小记 — 分库分表、主从、读写分离
前言 我在上篇博客 "Spring Boot 的实践与思考" 中比对不同规范的 ORM 框架应用场景的时候提到过主从与读写分离,本篇随笔将针对此和分库分表进行更深入地探讨. 1. ...
- JAVA_SE基础——54.异常
异常的体系: ----------| Throwable 所以异常或者错误类的超类 --------------|Error 错误 错误一般是用于jvm或者是硬件引发的问题,所以我们一般不会通 ...
- SpringCloud的微服务网关:zuul(理论)
参考链接:https://springcloud.cc/spring-cloud-dalston.html 一.概念与定义 1.为什么要引入API网关 后期维护:路由规则和服务实例列表困难 系统架构: ...
- iOS HTML图片本地预览
引言 相信用过苹果手机的童鞋,会发现很多新闻类的应用,都可以实现HTML图片本地预览,那么这是如何实现的呢?本文将深入阐述其中的原理. 关于此功能,我还实现了一个DEMO,大家可以点击此访问更详细内容 ...
- linux系统下的SVN安装
1.直接安装 # sudo apt-get install subversion 2. 创建版本库 # sudo mkdir /home/svn # sudo svnadmin create /hom ...
- django Form组件 上传文件
上传文件 注意:FORM表单提交文件要有一个参数enctype="multipart/form-data" 普通上传: urls: url(r'^f1/',views.f1), u ...