#164. 【清华集训2015】V

http://uoj.ac/problem/164

统计

Picks博士观察完金星凌日后,设计了一个复杂的电阻器。为了简化题目,题目中的常数与现实世界有所不同。

这个电阻器内有编号为 1∼n1∼n 的 nn 个独立水箱,水箱呈圆柱形,底面积为 1 m21 m2,每个水箱在顶部和底部各有一个阀门,可以让水以 1 m3/s 的流量通过,每个水箱的上阀门接水龙头,可以无限供应水,下阀门不接东西,可以让水流出。水箱顶部和底部都有一个接口,水的电阻率为 1 Ω⋅m。

水箱的高度足够高,有一个导电浮标浮在水面上,通过导线与水箱顶的接口相连。一开始时第 ii 个水箱中有 ai m3 的水。

Picks博士接下来就需要对这个复杂的电阻器进行调试。他会进行以下五种操作。

1、打开编号在 [l,r][l,r] 中的所有水箱的上方阀门 xx 秒,然后关上它们的上方阀门。

2、打开编号在 [l,r][l,r] 中的所有水箱的下方阀门 xx 秒,然后关上它们的下方阀门。

3、将编号在 [l,r][l,r] 中的所有水箱的下方阀门与大海通过连通器以一定方式相连,使得这些水箱中都恰拥有 x m3x m3 的水,然后关上它们的下方阀门,撤去连通器。

4、在第 yy 个水箱的上下方接口处接上一个电动势为 1 V1 V 的电源,电源没有内阻,Picks博士会测量出通过电源的电流大小,之后撤去该电源。

5、由于水浸泡过的地方会留下明显的水渍而没有被水浸泡过的地方不会有,Picks博士可以据此测量出此时第 yy 个水箱的水渍高度,以推断曾经最多有多少水,节约他的建造成本。

现在,他请你来帮他做预实验,你能告诉他每次测量得到的电流大小以及测量得到的最多的水量是多少吗?

输入格式

第一行两个数:n,mn,m。

接下来一行 nn 个数,第 ii 个数表示初始时第 ii 个水箱内有 ai m3ai m3 的水。

接下来 mm 行中,第 ii 行第一个数 titi 表示操作类型:

若 ti=1ti=1,则接下来三个整数 li,ri,xili,ri,xi,表示打开编号在 [li,ri][li,ri] 中的所有水箱的上方接口 xixi 秒。

若 ti=2ti=2,则接下来三个整数 li,ri,xili,ri,xi,表示打开编号在 [li,ri][li,ri] 中的所有水箱的下方接口 xixi 秒。

若 ti=3ti=3,则接下来三个整数 li,ri,xili,ri,xi,表示将编号在 [li,ri][li,ri] 中的所有水箱与大海连接,使这些水箱中都恰有 xi m3xi m3 的水。

若 ti=4ti=4,则接下来一个整数 yiyi,表示测量在第 yiyi 个水箱的上下方接口处接上一个电动势为 1 V1 V 的电源时通过电源的电流。

若 ti=5ti=5,则接下来一个整数 yiyi,表示测量此时在第 yiyi 个水箱中的水渍高度。

输出格式

对于每个 ti=4ti=4,输出一个整数表示通过电源的电流大小的倒数(单位为 A−1A−1 ),如果电流为无穷大则输出0。

对于每个 ti=5ti=5,输出一个整数表示在第 yiyi 个水箱中的水渍高度(单位为 mm )。

样例输入一

5 6
1 2 3 4 5
2 1 3 2
4 1
1 1 4 1
5 3
3 1 5 4
4 2

样例输出一

0
3
4

样例输入二

见相关文件下载

样例输出二

见相关文件下载

样例输入三

见相关文件下载

样例输出三

见相关文件下载

限制与约定

时间限制:2s

空间限制:128MB

测试点编号 n=n= m=m= 约定
1 10001000 10001000  
2 10001000 10001000  
3 105105 105105 没有操作2
4 5×1055×105 5×1055×105 没有操作2
5 105105 105105 没有操作1与操作5
6 105105 105105 没有操作1
7 5×1055×105 5×1055×105 没有操作1
8 5×1055×105 5×1055×105 没有操作5
9 105105 105105  
10 5×1055×105 5×1055×105  

对于所有的数据:1≤n,m≤5×105, 0≤ai,xi≤109,1≤li≤ri≤n, 1≤yi≤n1≤n,m≤5×105, 0≤ai,xi≤109,1≤li≤ri≤n, 1≤yi≤n.

提示

可能用到的物理公式:

1、欧姆定律:I=URI=UR,其中 I,U,RI,U,R 分别代表电流、电压和电阻。

2、电阻率公式:R=ρLSR=ρLS,其中 R,ρ,L,SR,ρ,L,S 分别代表电阻、电阻率、电阻长度、横截面积。

下载

相关文件下载

 
神奇的搞了一个标记(a,b),表示x=max{x+a,b}
统一了赋值、加减、查询操作,orz
区间加w:标记(w,0)
区间减w,再跟0取max:标记(-w,0)
区间赋值w:标记(-inf,w)
查询操作:维护当前的a,当前的b,历史最大的a,历史最大的b
 
标记的合并:
假设x原有标记(a,b),现在又来了一个标记(c,d)
原来的x=max{x+a,b}
现在x=max{x+a+c,b+c,d}=max{x+a+c,max(b+c,d)}
 
标记的下传:
先下传历史标记,再下传当前标记
若父节点有标记,那构成这个标记的所有操作一定在子节点标记后面,否则这个标记早就被传了下去
假设构成子节点标记的操作序列为[1,r],构成父节点标记的操作序列为[L,R],那么1<r<L<R
更新子节点历史标记:子节点的历史最大值应该在 操作序列[1,r]  和  操作序列[1,R]  中取最大
                            操作序列[1,r]就是子节点的标记,
                            操作序列[1,R]就是 标记[1,r]与标记[L,R]的合并,把[1,r]看作原有标记,把[L,R]看作又来的标记
更新子节点现有标记:两个标记直接加,然后取大即可
 
注意区间减w,可能会减爆设置的极小值,所以涉及到a的直接赋值操作都对-inf取max
 
每个点的初始标记为(0,0),每个点的初始值赋给a,那么实际代码中对标记的操作可以把x去掉
 
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#define N 500001
#define inf (1LL<<62)
using namespace std;
int n,m;
long long ansa,ansb;
struct node
{
int l,r;
long long na,nb,ha,hb;
bool f;
}tr[N*];
void build(int k,int l,int r)
{
tr[k].l=l; tr[k].r=r;
if(l==r)
{
scanf("%lld",&tr[k].na);
tr[k].ha=tr[k].na;
return;
}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
}
void down(int k)
{
for(int i=,z;z=k<<|i,i<;i++)
{
tr[z].ha=max(tr[z].ha,tr[k].ha+tr[z].na);
tr[z].hb=max(tr[z].hb,max(tr[z].nb+tr[k].ha,tr[k].hb));
tr[z].na=max(tr[z].na+tr[k].na,-inf);
tr[z].nb=max(tr[z].nb+tr[k].na,tr[k].nb);
}
tr[k].na=tr[k].nb=tr[k].ha=tr[k].hb=;
tr[k].f=;
tr[k<<].f=tr[k<<|].f=;
}
void change(int k,int l,int r,long long a,long long b)
{
if(tr[k].l>=l&&tr[k].r<=r)
{
tr[k].na=max(tr[k].na+a,-inf);
tr[k].nb=max(tr[k].nb+a,b);
tr[k].ha=max(tr[k].ha,tr[k].na);
tr[k].hb=max(tr[k].hb,tr[k].nb);
tr[k].f=true;
return;
}
if(tr[k].f) down(k);
int mid=tr[k].l+tr[k].r>>;
if(l<=mid) change(k<<,l,r,a,b);
if(r>mid) change(k<<|,l,r,a,b);
}
void query(int k,int p,int w)
{
if(tr[k].l==tr[k].r)
{
ansa= w== ? tr[k].na : tr[k].ha;
ansb= w== ? tr[k].nb : tr[k].hb;
return;
}
if(tr[k].f) down(k);
int mid=tr[k].l+tr[k].r>>;
if(p<=mid) query(k<<,p,w);
else query(k<<|,p,w);
}
int main()
{
scanf("%d%d",&n,&m);
build(,,n);
int op,l,r,x;
while(m--)
{
scanf("%d",&op);
if(op==)
{
scanf("%d%d%d",&l,&r,&x);
change(,l,r,x,);
}
else if(op==)
{
scanf("%d%d%d",&l,&r,&x);
change(,l,r,-x,);
}
else if(op==)
{
scanf("%d%d%d",&l,&r,&x);
change(,l,r,-inf,x);
}
else if(op==)
{
scanf("%d",&l);
query(,l,);
printf("%lld\n",max(ansa,ansb));
}
else
{
scanf("%d",&l);
query(,l,);
printf("%lld\n",max(ansa,ansb));
}
}
}
 
 

清华集训2015 V的更多相关文章

  1. 【uoj#164】[清华集训2015]V 线段树维护历史最值

    题目描述 给你一个长度为 $n$ 的序列,支持五种操作: $1\ l\ r\ x$ :将 $[l,r]$ 内的数加上 $x$ :$2\ l\ r\ x$ :将 $[l,r]$ 内的数减去 $x$ ,并 ...

  2. UOJ #164 [清华集训2015]V (线段树)

    题目链接 http://uoj.ac/problem/164 题解 神仙线段树题. 首先赋值操作可以等价于减掉正无穷再加上\(x\). 假设某个位置从前到后的操作序列是: \(x_1,x_2,..., ...

  3. 「清华集训2015」V

    「清华集训2015」V 题目大意: 你有一个序列,你需要支持区间加一个数并对 \(0\) 取 \(\max\),区间赋值,查询单点的值以及单点历史最大值. 解题思路: 观察发现,每一种修改操作都可以用 ...

  4. uoj164. 【清华集训2015】V 统计

    坑爹题面:http://uoj.ac/problem/164 正常题面: 对于一个序列支持下列5个操作: 1.区间加x 2.区间减x并与0取max 3.区间覆盖 4.单点查询 5.单点历史最大值查询 ...

  5. LOJ 164 【清华集训2015】V——线段树维护历史最值

    题目:http://uoj.ac/problem/164 把操作改成形如 ( a,b ) 表示加上 a 之后对 b 取 max 的意思. 每个点维护当前的 a , b ,还有历史最大的 a , b 即 ...

  6. 2018.07.28 uoj#164. 【清华集训2015】V(线段树)

    传送门 线段树好题. 要求支持的操作: 1.区间变成max(xi−a,0)" role="presentation" style="position: rela ...

  7. UOJ #164 【清华集训2015】 V

    题目链接:V 这道题由于是单点询问,所以异常好写. 注意到每种修改操作都可以用一个标记\((a,b)\)表示.标记\((a,b)\)的意义就是\(x= \max\{x+a,b\}\) 同时这种标记也是 ...

  8. UOJ#164:【清华集训2015】V

    浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html 题目传送门:http://uoj.ac/problem/164 论文题.论文 ...

  9. @uoj - 164@ 【清华集训2015】V

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化 ...

随机推荐

  1. bzoj2969 矩形粉刷

    学习一波用markdown写题解的姿势QAQ 题意 给你一个w*h的矩形网格,每次随机选择两个点,将以这两个点为顶点的矩形内部的所有小正方形染黑,问染了k次之后期望有多少个黑色格子. 分析 一开始看错 ...

  2. 【洛谷1032 】【CJOJ1711】【NOIP2002】字串变换

    ###题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换 ...

  3. 杜教筛:Bzoj3944: sum

    题意 求\(\sum_{i=1}^{n}\varphi(i)和\sum_{i=1}^{n}\mu(i)\) \(n <= 2^{31}-1\) 不会做啊... 只会线性筛,显然不能线性筛 这个时 ...

  4. Android KeyCode 列表

    基本按键 KEYCODE_0 按键'0' 7 KEYCODE_1 按键'1' 8 KEYCODE_2 按键'2' 9 KEYCODE_3 按键'3' 10 KEYCODE_4 按键'4' 11 KEY ...

  5. Windows 8 系统快捷键热键列表收集

    值得收藏参考的 Windows 8 系统快捷键热键列表收集大全汇总,键盘党效率党必备啊! 相信不少喜欢接触新鲜软件的同学都已经给电脑安装上Windows 8 操作系统了吧!这个系统优秀与否我们暂且不讨 ...

  6. 十倍效能提升——Web 基础研发体系的建立

    1 导读 web 基础研发体系指的是, web 研发中一线工程师所直接操作的技术.工具,以及所属组织架构的总和.在过去提升企业研发效能的讨论中,围绕的主题基本都是——”通过云计算.云存储等方式将底层核 ...

  7. Linux中安装字体

    Linux中安装字体 查看系统中的字体 fc-list 查看系统中的中文字体 fc-list :lang=zh将然后将字体文件拷贝到/usr/share/fonts/中 cp aa.ttl /usr/ ...

  8. Mycat 介绍

    Mycat 是什么 Mycat是什么?从定义和分类来看,它是一个开源的分布式数据库系统,是一个实现了 MySQL协议的的Server,前端用户可以把它看作是一个数据库代理,用 MySQL客户端工具和命 ...

  9. Day2------字符编码

    复习: 系统启动流程:bios------->找到启动介质---------->把系统加载到内存------------>CPU执行 字符编码 一.字符串------------&g ...

  10. 【JS】 Javascript 入门

    javascript **********本章大量示例和内容引用自w3cschool的javascript教程************** 本来已经快写完90%左右了,结果不小心跑了个js,不小心把浏 ...