我为什么放弃MySQL?最终选择了MongoDB
最近有个项目的功能模块,为了处理方便,需要操作集合类型的数据以及其他原因。考虑再三最终决定放弃使用MySQL,而选择MongoDB。
两个数据库,大家应该都不陌生。他们最大的区别就是MySQL为关系型数据库,而MongoDB为非关系型数据库。常见的关系型数据库有:MySQL、Oracle、DB2、SQL Server、Postgre SQL等,非关系型数据库有MongoDB、Redis、Memcached、HBse等等。
1、关系型数据库? 非关系型数据库?
关系型数据库可以理解为依赖一个模型来创建的数据库,比如我们使用的MySQL中的表是由横列和纵列组成的一个二维表格。关系型数据库可以通过关系模型使多个表的数据关联起来,比如我们平时说的 一对一、一对多、多对一。由于是建立在数据模型的基础上,所以我们可以通过SQL语句很方便的在多个表之间做复杂的查询操作。关系型数据库相对安全,因为直接存储在硬盘中所以突然的宕机、停电等意外不会导致数据丢失。MySQL的存储方式是由自身的引擎决定的,常用的引擎有Innodb和MyISAM。他们主要的区别就是MyISAM 不支持事务,强调的是性能,执行速度比Innodb要快,Innodb提供支持事务等高级数据库功能。
非关系型数据库即我们常说的NoSQL数据库,部署起来都比较简单,没有关系型数据库那么复杂。Mongo的存储方式为虚拟内存+持久化存储,Mongo将数据写入内存中,再由虚拟内存管理器将其持久化到硬盘中,因此写操作会比关系型数据库快很多。NOSQL的存储格式是key-value形式,可以像关系型数据库那样存储基础数据类型的数据,也可以存储集合、对象等等。NoSQL虽然性能比较高,但是并不支持事物,也不能进行联表查询,一般用于较大规模数据的存储。
2、他们的优点、缺点有哪些
关系型数据库发展了很长一段时间,拥有非常成熟的体系。所占份额也在逐渐增加。而且支持事物的操作,保证数据的一致性,可以通过SQL语句完成复杂的操作。但是使用过程中当数据量到达一定程度时,关系型数据库的效率会有明显的下降。一个复杂的查询操作,一系列的组合索引都会消耗非常多的内存空间,此时我们需要对数据库进行读写分离操作,或者将数据库结构进行拆分(水平拆分、垂直拆分)将请求压力分担在不同的库中。
垂直拆分是指将一张表拆分成多个表,表之间通过主键进行关联。
水平拆分是按照某种规则拆分成多个表,比如通过用户角色进行拆分
读写分离:所谓读写分离就是讲读操作(查询数据)和写操作(插入&更新)指向不同的数据库节点,他们中间通过某种机制实现数据的同步,如binlog。实际的应用中大部分压力还是来自读操作,所以主要是一主多从的架构。
非关系型数据库发展的这几年,深受人们的喜爱。免费开源、成本低、部署简单、非结构化存储等等明显的优势。而且它对海量数据处理能力非常强,内存级数据库,查询速度也非常快。存储的数据格式比较丰富,易于扩展,虽然不能使用sql进行复杂的查询,但是MongoDB支持JavaScript,所以可以通过js脚本进行复杂的数据库管理操作。关于NoSQL的缺点个人感觉目前就是不支持事物了吧,其他方面那都不是事儿。
3、什么时候用mongo
Mongo是用c++编写的,支持多种语言如:Java、Python、Ruby、PHP、C++、C# 等,有时候针对不同的业务需求,选择Mongo能够避免浪费很多不必要的资源
日志系统
系统运行过程中产生的日志信息,一般种类较多、范围较大、内容也比较杂乱。通过MongoDB可以将这些杂乱的日志进行收集管理。不仅方便了管理,查找或者导出也会变得非常容易
地理位置存储
MongoDB支持地理位置、二维空间索引,可以存储经纬度,因此可以很快的计算出两点之间的距离,等位置信息。如查询附近的人、或者订餐系统、配送系统等
数据规模增长很快
前面提到过关系型数据库数据量过大时,需要进行分库分表,这样真正操作起来可能会比较麻烦。如果选择mongo进行分库分表操作时,就会变得很简单。
保证高可用的环境
Mongo本身就拥有高可用及分区的解决方案,设置主从服务器非常方便,除此之外Mongo还可以快速并且安全的实现故障节点的转移。
文件存储需求
GridFS是MongoDB规范,用于存储和检索图片、音频、视频等大文件。GridFS虽然是文件存储的一种方式,可以存储超过16M的文件。但是它本身又是存储在MongoDB集合中的
其他场景
如游戏开发中我们可以通过MongoDB存储用户信息、装备、积分等,除此之外物流系统、社交系统、甚至物联网系统,Mongo都能提供完美的数据存储服务。
4.MySQL、MongoDB简单的性能测试
关于两个数据的性能,最有力的的说话还是通过实践来进行测试,网上看到一组测试数据,分享给大家。
测试环境:Windows 10、内存8G、CPU i5 3.30GHZ。均无索引
测试语言:Python
链接工具:pymysql、pymongo
MySQL && Mongo 测试数据统计
提交次数 | 单次提交个数 | MySQL运行时间(s) | Mongo运行时间(s) | 数据量 | |
---|---|---|---|---|---|
1 | 1000 | 10000 | 3912 | 1622.02 | 0 |
2 | 100 | 100 | 30 | 1.61 | 1000万 |
3 | 100 | 100 | 5.77 | 1.60 | 0 |
4 | 10 | 25 | 2.35 | 1.56 | 0 |
5 | 10 | 25 | 7.42 | 1.60 | 1000万 |
6 | 10000 | 1 | 298.07 | 5.29 | 0 |
7 | 10000 | 1 | 496.18 | 5.29 | 1000万 |
欢迎关注我的个人公众号:【程序员共成长】
一个专门面向程序员群体的圈子,专注分享日常学习总结、业内资讯、优质学习视频资源, 这里不光有技术、还有诗和远方…给新加入的小伙伴准备了见面礼,包括但不限于Java、Python、Linux、数据库、大数据、架构以及各方向电子书。公众号内回复[礼包]即可领取。
我为什么放弃MySQL?最终选择了MongoDB的更多相关文章
- 我为什么放弃MySQL?选择了MongoDB
最近有个项目的功能模块,为了处理方便,需要操作集合类型的数据以及其他原因.考虑再三最终决定放弃使用MySQL,而选择MongoDB. 两个数据库,大家应该都不陌生.他们最大的区别就是MySQL为关系型 ...
- MySQL如何选择合适的索引
先来看一个栗子 EXPLAIN select * from employees where name > 'a'; 如果用name索引查找数据需要遍历name字段联合索引树,然后根据遍历出来的主 ...
- 选择或者放弃MySQL的理由
MySQL 作为一个开源数据库,自从被 Oracle 接管后,其发展前景就一直受到开发社区的关注,其中也有质疑,最近,两位开发者分别发表了选择和放弃MySQL 的理由,值得数据库相关人员参考. And ...
- 为什么放弃Hibernate、JPA、Mybatis,最终选择JDBCTemplate
一.前言 因为项目需要选择数据持久化框架,看了一下主要几个流行的和不流行的框架,对于复杂业务系统,最终的结论是,JOOQ是总体上最好的,可惜不是完全免费,最终选择JDBC Template. Hibe ...
- Mysql 分组选择
Mysql 分组选择 在其他的数据库中我们遇到分组选择的问题时,比如在分组中计算前10名的平均分 我们可以使用row_number()over() 比较方便的得到. 但是在mysql中,问题就被抛了出 ...
- Navicat Premium 12 破解(MySQL、MariaDB、MongoDB、SQL Server、SQLite)
打开注入到安装目录中的exe中 破解提示(还没好,继续看下去) 如果你安装的是中文版,选一下中文版(英文默认即可),获取一下key(名字和组织可以自定义) 打开Navicat,选择注册(第一次打开选注 ...
- 了解常用数据库MySQL、Oracle、MongoDB
本文由 简悦 SimpRead 转码, 原文地址 blog.csdn.net 注:转载文章 什么是数据库 简单的说,数据库(英文 Dtabase)就是一个存放数据的仓库,这个仓库是按照一定的数据结果( ...
- 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式 一 表结构如下: 万行 CREATE TABLE t_audit_operate_log ( Fid b ...
- MySQL索引选择不正确并详细解析OPTIMIZER_TRACE格式
一 表结构如下: CREATE TABLE t_audit_operate_log ( Fid bigint(16) AUTO_INCREMENT, Fcreate_time int(10) un ...
随机推荐
- 四年级--python函数基础用法
一.函数的定义,调用和返回值 1.1 语法 def 函数(参数一,参数二...): ''' 文档注释 ''' 代码逻辑一 代码逻辑二 .... return 返回值 1.2 定义函数的三种形式 说明: ...
- 分布式缓存管理平台XXL-CACHE
<分布式缓存管理平台XXL-CACHE> 一.简介 1.1 概述 XXL-CACHE是一个分布式缓存管理平台,其核心设计目标是"让分布式缓存的接入和管理的更加的简洁和高效&quo ...
- Android动态字符串拼接----%s
在开发经常遇到字符串中的某一数据或多个数据是动态变化的. 如下图 不要创建3个TextView,暂时不考虑颜色变化的情况,可以用以下做法. <string name="maintain ...
- Servlet线程
一,servlet容器如何同时处理多个请求. Servlet采用多线程来处理多个请求同时访问,Servelet容器维护了一个线程池来服务请求.线程池实际上是等待执行代码的一组线程叫做工作者线程(Wor ...
- Flask快速入门
flask快速入门 1.1.三种框架比较 Django: 重武器,内部包含了非常多组件:ORM.Form.ModelForm.缓存.Session.中间件.信号等 Flask:短小精悍,内部没有太多组 ...
- codeforces 983A Finite or not?
题意: 判断一个分数在某一进制下是否为无限小数. 思路: 首先把这个分数约分,然后便是判断. 首先,一个分数是否为无限小数,与分子是无关的,只与分母有关. 然后,再来看看10进制的分数,可化为有限小数 ...
- PAT1079 :Total Sales of Supply Chain
1079. Total Sales of Supply Chain (25) 时间限制 250 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- LR测试
LoadRunner种预测系统行性能负载测试工具通模拟千万用户实施并发负载及实性能监测式确认查找问题LoadRunner能够整企业架构进行测试通使用 LoadRunner企业能限度缩短测试间优化性能加 ...
- GROUP BY 和 ORDER BY一起使用时的注意点
order by的列,必须是出现在group by子句里的列ORDER BY要在GROUP BY的后面
- Spring Boot 1.4测试的简单理解
首先maven要引入spring-boot-starter-test这个包. 先看一段代码 @RunWith(SpringRunner.class) @SpringBootTest(webEnviro ...