题意翻译

给你一串数列a.对于一个质数p,定义函数f(p)=a数列中能被p整除的数的个数.给出m组询问l,r,询问[l,r]区间内所有素数p的f(p)之和.

题目描述

Recently, the bear started studying data structures and faced the following problem.

You are given a sequence of integers x1,x2,...,xn x_{1},x_{2},...,x_{n} x1​,x2​,...,xn​ of length n n n and m m m queries, each of them is characterized by two integers li,ri l_{i},r_{i} li​,ri​ . Let's introduce f(p) f(p) f(p) to represent the number of such indexes k k k , that xk x_{k} xk​ is divisible by p p p . The answer to the query li,ri l_{i},r_{i} li​,ri​ is the sum: , where S(li,ri) S(l_{i},r_{i}) S(li​,ri​) is a set of prime numbers from segment [li,ri] [l_{i},r_{i}] [li​,ri​] (both borders are included in the segment).

Help the bear cope with the problem.

输入输出格式

输入格式:

The first line contains integer n n n (1<=n<=106) (1<=n<=10^{6}) (1<=n<=106) . The second line contains n n n integers x1,x2,...,xn x_{1},x_{2},...,x_{n} x1​,x2​,...,xn​ (2<=xi<=107) (2<=x_{i}<=10^{7}) (2<=xi​<=107) . The numbers are not necessarily distinct.

The third line contains integer m m m (1<=m<=50000) (1<=m<=50000) (1<=m<=50000) . Each of the following m m m lines contains a pair of space-separated integers, li l_{i} li​ and ri r_{i} ri​ (2<=li<=ri<=2⋅109) (2<=l_{i}<=r_{i}<=2·10^{9}) (2<=li​<=ri​<=2⋅109) — the numbers that characterize the current query.

输出格式:

Print m m m integers — the answers to the queries on the order the queries appear in the input.

输入输出样例

输入样例#1:
复制

6
5 5 7 10 14 15
3
2 11
3 12
4 4
输出样例#1: 复制

9
7
0
输入样例#2: 复制

7
2 3 5 7 11 4 8
2
8 10
2 123
输出样例#2: 复制

0
7 首先可以线性筛筛出 1e7 里面所有的素数;
对于每一个x[i] ,我们记录其次数,然后类似于埃筛的做法,对于每个素数,用 sum [ i ] 来累计有该素数因子的数的个数;
最后用前缀和维护;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 10000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n;
int x[maxn];
int m;
int cnt[maxn];
int prime[maxn];
int tot = 0;
int sum[maxn];
bool vis[maxn]; void init() {
vis[1] = 1;
for (int i = 2; i < maxn; i++) {
if (!vis[i])prime[++tot] = i;
for (int j = 1; prime[j] * i < maxn; j++) {
vis[prime[j] * i] = 1;
if (i%prime[j] == 0)break;
}
}
} int main()
{
//ios::sync_with_stdio(0);
rdint(n);
for (int i = 1; i <= n; i++)rdint(x[i]), cnt[x[i]]++;
init();
for (int i = 1; i <= tot; i++) {
for (int j = 1; j*prime[i] < maxn; j++) {
sum[i] += cnt[j*prime[i]];
}
}
for (int i = 1; i <= tot; i++)sum[i] += sum[i - 1];
rdint(m);
while (m--) {
int l, r; rdint(l); rdint(r);
int pos1 = upper_bound(prime + 1, prime + 1 + tot, r) - prime - 1;
int pos2 = lower_bound(prime + 1, prime + 1 + tot, l) - prime - 1;
// cout << pos1 << ' ' << pos2 << endl;
cout << sum[pos1] - sum[pos2] << endl;
}
return 0;
}

CF385C Bear and Prime Numbers 数学的更多相关文章

  1. CF385C Bear and Prime Numbers

    思路: 需要对埃氏筛法的时间复杂度有正确的认识(O(nlog(log(n)))),我都以为肯定超时了,结果能过. 实现: #include <bits/stdc++.h> using na ...

  2. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  3. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

  4. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  5. CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)

    Recently, the bear started studying data structures and faced the following problem. You are given a ...

  6. CodeForces 385C Bear and Prime Numbers 素数打表

    第一眼看这道题目的时候觉得可能会很难也看不太懂,但是看了给出的Hint之后思路就十分清晰了 Consider the first sample. Overall, the first sample h ...

  7. 680C. Bear and Prime 100 数学

    C. Bear and Prime 100 time limit per test:1 second memory limit per test:256 megabytes input:standar ...

  8. codeforces 356 div2 C.Bear and Prime 100 数学

    C. Bear and Prime 100 time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #226 (Div. 2)C. Bear and Prime Numbers

    /* 可以在筛选质数的同时,算出每组数据中能被各个质数整除的个数, 然后算出[0,s]的个数 [l,r] 的个数即为[0,r]的个数减去[0,l]个数. */ #include <stdio.h ...

随机推荐

  1. phonegap制作windows phone包

    下载SDK win7及以下版本下载SDK http://www.microsoft.com/zh-cn/download/confirmation.aspx?id=27570 WIN8下载SDK ht ...

  2. appium运行时启动失败

    1.检查服务是否开启 2.简单Android设备是否连接成功 3.检查4723端口是否被占用: netstat -ano|findstr '4723' 查到被占用后,找到pid,进入任务管理器查看该p ...

  3. 图解缓存淘汰算法二之LFU

    1.概念分析 LFU(Least Frequently Used)即最近最不常用.从名字上来分析,这是一个基于访问频率的算法.与LRU不同,LRU是基于时间的,会将时间上最不常访问的数据淘汰;LFU为 ...

  4. rsync 同步mac机器目录数据到windows2008R2

    openssh rsync -azvP --progress -e "ssh -p 6099" /ahwater/rsync/ ahwater@ip:/ahwater

  5. does not contain bitcode. You must rebuild it with

    *** does not contain bitcode. You must rebuild it with bitcode enabled (Xcode setting ENABLE_BITCODE ...

  6. sizeof总结

    1.sizeof常用总结 ①与strlen比较       strlen 计算字符串的字符数,以"\0"为结束判断,但不统计结束符.   sizeof 计算数据(数组.变量.类型. ...

  7. JAVA基础知识总结14(String、StringBuffer、StringBuilder)

    1.String字符串: java中用String类进行描述.对字符串进行了对象的封装.这样的好处是可以对字符串这种常见数据进行方便的操作.对象封装后,可以定义N多属性和行为. 如何定义字符串对象呢? ...

  8. SQLiteopenhelper创建database的过程

    首先由于SQLiteOpenHelper是一个抽象类,所以我们要创建一个自己的类实现它,并实现抽象方法, public void onCreate(SQLiteDatabase db) public ...

  9. 【总结整理】WebGIS基础

    1.万维网:www是world wide web的简称是在超文本基础上形成的信息网 2.互联网:即广域局域网及单机按照一定的通讯协议组成的国际计算机网络 3.WebGIS:网络地理信息系统,指基于In ...

  10. HTML5的头部、拨号、短信、邮件(转)

    HTML5[语法要点] 一.头部设置 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 <!--页面窗口自动调整到设备 ...