Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 28802   Accepted: 9353

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414
这题可以用Dijkstra,将松弛条件改一下就可以了,改成
          if(dis[j]>max(dis[stone],map[stone][j])&&(vis[j]==0)){
dis[j]=max(dis[stone],map[stone][j]);
}
这样的结果就是求得能到达这点的路径上的最长边的最小值,求输出时要注意格式
 #include <iostream>
#include<math.h>
#include<limits.h>
#include<algorithm>
#include<iomanip>
using namespace std;
int num;
int vis[],stone[][];
int map[][],dis[];
int Dijkstra(){
for(int i=;i<num;i++){
dis[i]=INT_MAX;
vis[i]=;
}
dis[]=;
for(int i=;i<num;i++){
int min=INT_MAX;
int stone;
for(int j=;j<num;j++){
if((vis[j]==)&&min>dis[j]){
stone=j;
min=dis[j];
}
}
vis[stone]=;
if(min==INT_MAX)
break;
for(int j=;j<num;j++){
if(dis[j]>max(dis[stone],map[stone][j])&&(vis[j]==)){
dis[j]=max(dis[stone],map[stone][j]);
}
}
}
return dis[];
} int main() { cin>>num;
int count=;
while(num){
for(int i=;i<num;i++){
cin>>stone[i][]>>stone[i][];
}
for(int i=;i<num;i++){
for(int j=;j<num;j++){
map[i][j]=pow((stone[i][]-stone[j][]),)+pow((stone[i][]-stone[j][]),);
}
}
float fdis=sqrt(Dijkstra());
cout<<fixed;
cout<<"Scenario #"<<count<<endl<<"Frog Distance = "<<setprecision()<<fdis<<endl<<endl; count++;
cin>>num;
} return ;
}

Frogger - poj 2253 (Dijkstra)的更多相关文章

  1. Poj(2253),Dijkstra松弛条件的变形

    题目链接:http://poj.org/problem?id=2253 题意: 给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通 ...

  2. Frogger POJ - 2253(求两个石头之间”所有通路中最长边中“的最小边)

    题意 ​ 题目主要说的是,有两只青蛙,在两个石头上,他们之间也有一些石头,一只青蛙要想到达另一只青蛙所在地方,必须跳在石头上.题目中给出了两只青蛙的初始位置,以及剩余石头的位置,问一只青蛙到达另一只青 ...

  3. kuangbin专题专题四 Frogger POJ - 2253

    题目链接:https://vjudge.net/problem/POJ-2253 思路: 从一号到二号石头的所有路线中,每条路线中都个子选出该路线中两点通路的最长距离,并在这些选出的最长距离选出最短路 ...

  4. floyd类型题UVa-10099-The Tourist Guide +Frogger POJ - 2253

    The Tourist Guide Mr. G. works as a tourist guide. His current assignment is to take some tourists f ...

  5. Frogger POJ - 2253

    题意 给你n个点,1为起点,2为终点,要求所有1到2所有路径中每条路径上最大值的最小值. 思路 不想打最短路 跑一边最小生成树,再扫一遍1到2的路径,取最大值即可 注意g++要用%f输出!!! 常数巨 ...

  6. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  7. POJ 2253 ——Frogger——————【最短路、Dijkstra、最长边最小化】

    Frogger Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  8. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  9. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

随机推荐

  1. 【报错】spring boot启动 报错 找不到实体类Not a managed type: class com.pisen.cloud.luna.feign.ten.beans.SysUser

    Caused by: java.lang.IllegalArgumentException: Not a managed type: class com.pisen.cloud.luna.feign. ...

  2. SimpleDateFormat关于时间类的一些常用处理

    项目中经常会出现对时间类的一些处理,记录一下: 实例一:/** * 获取当前时间是星期几? * * @param args */ public static void main(String[] ar ...

  3. win10 virtualenv

    一 创建新虚拟环境 virtualenv appiumenv 二 激活 appiumenv\Scripts\activate 注意是正斜杠,

  4. lamp+nginx代理+discuz+wordpress+phpmyadmin

    实验课题:搭建LAMP,安装Nginx,作为代理,将MySQL安装在单独的机器,apache负责动态,nginx负责静态 实验环境: 1.VMware Workstation 11 2.设备A:MyS ...

  5. remmina rdp远程连接windows

    一.remmina rdp远程连接windows sudo apt-get install remmina 二.ubuntu设置桌面快捷方式 ①找到Remmina远程桌面客户端 比如在[搜索您的本地和 ...

  6. sqoop使用记录

    sqoop简介 Sqoop是用来实现结构型数据(如关系数据库)和Hadoop之间进行数据迁移的工具.它充分利用了MapReduce的并行特点以批处理的方式加快数据的传输,同时也借助MapReduce实 ...

  7. 一起学Netty(一)之 Hello Netty

    一起学Netty(一)之 Hello Netty 学习了:https://blog.csdn.net/linuu/article/details/51306480

  8. 【oracle11g,17】存储结构: 段的类型,数据块(行连接、行迁移,块头),段的管理方式,高水位线

    一.段的类型: 1.什么是段:段是存储单元. 1.段的类型有: 表 分区表 簇表 索引 索引组织表(IOT表) 分区索引 暂时段 undo段 lob段(blob ,clob) 内嵌表(record类型 ...

  9. Node.js 使用jQuery取得Nodejs http服务端返回的JSON数组示例

    server.js代码: // 内置http模块,提供了http服务器和客户端功能(path模块也是内置模块,而mime是附加模块) var http=require("http" ...

  10. 用MyEclipse2016 CI版创建一个SpringBoot程序

    之前先要在Eclipse里安装STS,步骤如下: 1.点击菜单Help->Install from Catalog 2.在弹出的对话框中点击Popular选项卡,在STS旁边点Install按钮 ...