题目大意:

http://www.lydsy.com/JudgeOnline/problem.php?id=1007;

题解

其实就是求每条直线的上半部分的交

所以做裸半平面交即可

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 50010;
const double eps = 1e-9;
inline int dcmp(const double &x){
if(x < eps && x > -eps) return 0;
return x > 0 ? 1 : -1;
}
struct Point{
double x,y;
Point(){}
Point(const double &a,const double &b){x=a;y=b;}
void print(){
printf("%lf %lf\n",x,y);
}
};
struct line{
double k,b;
int id;
};
inline bool cmp(const line &a,const line &b){
return dcmp(a.k-b.k) == 0 ? a.b > b.b : a.k < b.k;
}
inline bool kmp(const line &a,const line &b){
return a.id < b.id;
}
inline Point Interion(const line &x,const line &y){
double t = (y.b - x.b)/(x.k - y.k);
return Point(t,x.k*t+x.b);
}
line lines[maxn],sta[maxn];
int top = 0;
int main(){
int n;read(n);
for(int i=1;i<=n;++i){
scanf("%lf%lf",&lines[i].k,&lines[i].b);
lines[i].id = i;
}sort(lines+1,lines+n+1,cmp);
for(int i=1;i<=n;++i){
if(dcmp(lines[i].k-sta[top].k) == 0) continue;
while(top >= 2){
Point x = Interion(lines[i],sta[top]);
Point y = Interion(sta[top],sta[top-1]);
if(dcmp(x.x-y.x) <= 0) --top;
else break;
}sta[++top] = lines[i];
}sort(sta+1,sta+top+1,kmp);
for(int i=1;i<=top;++i) printf("%d ",sta[i].id);
getchar();getchar();
return 0;
}

bzoj 1007: [HNOI2008]水平可见直线 半平面交的更多相关文章

  1. BZOJ 1007 [HNOI2008]水平可见直线 ——半平面交 凸包

    发现需要求一个下凸的半平面上有几个交点. 然后我们把它变成凸包的问题. 好写.好调.还没有精度误差. #include <map> #include <ctime> #incl ...

  2. 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...

  3. bzoj 1007 [HNOI2008]水平可见直线(单调栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Sta ...

  4. BZOJ 1007 [HNOI2008]水平可见直线

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4453  Solved: 1636[Submit][Sta ...

  5. BZOJ 1007 [HNOI2008]水平可见直线 (栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7940  Solved: 3030[Submit][Sta ...

  6. BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  7. BZOJ 1007: [HNOI2008]水平可见直线 平面直线

    1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...

  8. [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:   ...

  9. 【bzoj1007】[HNOI2008]水平可见直线 半平面交/单调栈

    题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...

随机推荐

  1. iOS 富文本类库RTLabel

      本文转载至 http://blog.csdn.net/duxinfeng2010/article/details/9004749  本节关于RTLable基本介绍,原文来自 https://git ...

  2. Java水印图片处理

    今天需要用Java程序给图片加水印,于是在网上找到了一段代码,感觉很好,于是记录了下来,原来的网址给忘了: import java.awt.AlphaComposite; import java.aw ...

  3. Windows7 配置两个版本的java环境,可自由切换

    1. 准备工作 下载jdk: jdk1.7[http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads ...

  4. c++的检测的确比C++更严格

    见下面代码 #include <stdio.h> #include <stdlib.h> #include <time.h> enum guess { paper, ...

  5. PLSQL使用技巧----加快你的编程效率

    使用PLSQL 编程效率明显有所提高了 1.登录后默认自动选中My Objects      默认情况下,PLSQL Developer登录后,Brower里会选择All objects,如果你登录的 ...

  6. tomcat 编码问题

    默认情况下,tomcat使用的的编码方式:iso8859-1 修改tomcat下的conf/server.xml文件 找到如下代码:    < Connector port="8080 ...

  7. Java语言实现简单FTP软件------>上传下载管理模块的实现(十一)

    1.上传本地文件或文件夹到远程FTP服务器端的功能. 当用户在本地文件列表中选择想要上传的文件后,点击上传按钮,将本机上指定的文件上传到FTP服务器当前展现的目录,下图为上传子模块流程图 选择好要上传 ...

  8. 8.Django模型类例子

    这里定义4个模型 作者:一个作者有姓名 作者详情:包括性别,email,出生日期, 出版商:名称,地址,城市,省,国家,网站 书籍:名称,日期 分析: 作者详情和作者一对一的关系 一本书可以有多个作者 ...

  9. bug-2——tab中beforeActivate:在对象活动前触发

    $j("#tabs").tabs({ beforeActivate:function(event,ui){ var ret = apoCheck('${requestScope.a ...

  10. 用 Java 技术创建 RESTful Web 服务

    JAX-RS:一种更为简单.可移植性更好的替代方式 JAX-RS (JSR-311) 是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松.这个 API 提供了一种基于 ...