Background

Before Albanian people could bear with the freedom of speech (this story is fully described in the problem "Freedom of speech"), another freedom - the freedom of choice - came down on them. In the near future, the inhabitants will have to face the first democratic Presidential election in the history of their country.
Outstanding Albanian politicians liberal Mohammed Tahir-ogly and his old rival conservative Ahmed Kasym-bey declared their intention to compete for the high post.

Problem

According to democratic traditions, both candidates entertain with digging dirt upon each other to the cheers of their voters' approval. When occasion offers, each candidate makes an election speech, which is devoted to blaming his opponent for corruption, disrespect for the elders and terrorism affiliation. As a result the speeches of Mohammed and Ahmed have become nearly the same, and now it does not matter for the voters for whom to vote.
The third candidate, a chairman of Albanian socialist party comrade Ktulhu wants to make use of this situation. He has been lazy to write his own election speech, but noticed, that some fragments of the speeches of Mr. Tahir-ogly and Mr. Kasym-bey are completely identical. Then Mr. Ktulhu decided to take the longest identical fragment and use it as his election speech.

Input

The first line contains the integer number N (1 ≤ N ≤ 100000). The second line contains the speech of Mr. Tahir-ogly. The third line contains the speech of Mr. Kasym-bey. Each speech consists of N capital latin letters.

Output

You should output the speech of Mr. Ktulhu. If the problem has several solutions, you should output any of them.

Example

input output
28
VOTEFORTHEGREATALBANIAFORYOU
CHOOSETHEGREATALBANIANFUTURE
THEGREATAL

题意:

找到最长公共子序列并输出。

灵感:

这个题只有一个最长公共子序列。如果有多个的时候而且要求最小字典序,可以排序或许建立字典树找到最小字典序的最长公共子序列。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
char str1[maxn],str2[maxn];
int L,L1,L2,ch[maxn];
struct SA
{
int cntA[maxn],cntB[maxn],A[maxn],B[maxn];
int rank[maxn],sa[maxn],tsa[maxn],ht[maxn];
void sort()
{
for (int i = ; i <= ; i ++) cntA[i] = ;
for (int i = ; i <= L; i ++) cntA[ch[i]] ++;
for (int i = ; i <= ; i ++) cntA[i] += cntA[i - ];
for (int i = L; i; i --) sa[cntA[ch[i]] --] = i;
rank[sa[]] = ;
for (int i = ; i <= L; i ++){
rank[sa[i]] = rank[sa[i - ]];
if (ch[sa[i]] != ch[sa[i - ]]) rank[sa[i]] ++;
}
for (int l = ; rank[sa[L]] < L; l <<= ){
for (int i = ; i <= L; i ++) cntA[i] = ;
for (int i = ; i <= L; i ++) cntB[i] = ;
for ( int i = ; i <= L; i ++){
cntA[A[i] = rank[i]] ++;
cntB[B[i] = (i + l <= L) ? rank[i + l] : ] ++;
}
for (int i = ; i <= L; i ++) cntB[i] += cntB[i - ];
for (int i = L; i; i --) tsa[cntB[B[i]] --] = i;
for (int i = ; i <= L; i ++) cntA[i] += cntA[i - ];
for (int i = L; i; i --) sa[cntA[A[tsa[i]]] --] = tsa[i];
rank[sa[]] = ;
for (int i = ; i <= L; i ++){
rank[sa[i]] = rank[sa[i - ]];
if (A[sa[i]] != A[sa[i - ]] || B[sa[i]] != B[sa[i - ]]) rank[sa[i]] ++;
}
}
}
void getht()
{
for (int i = , j = ; i <= L; i ++){
if (j) j --;
while (ch[i + j] == ch[sa[rank[i] - ] + j]) j ++;
ht[rank[i]] = j;
}
}
};
SA Sa;
void init()
{
scanf("%d",&L1);
scanf("%s",str1+);
scanf("%s",str2+);
L1=strlen(str1+);
L2=strlen(str2+);
for(int i=;i<=L1;i++) ch[i]=str1[i]-'A'+;
ch[L1+]=;
for(int i=;i<=L2;i++) ch[i+L1+]=str2[i]-'A'+;
L=L1+L2+;
}
int main()
{
init();
Sa.sort();
Sa.getht();
int ans=,pos=;
for(int i = ; i <= L; i++){
if((Sa.sa[i]<=L1)!=(Sa.sa[i-]<=L1))
if(Sa.ht[i]>ans){
ans=Sa.ht[i];pos=Sa.sa[i];
}
}
for(int i=pos;i<=pos+ans-;i++) printf("%c",ch[i]+'A'-);
return ;
}

URAL1517Freedom of Choice(后缀数组)的更多相关文章

  1. Ural 1517. Freedom of Choice 后缀数组

    Ural1517 所谓后缀数组, 实际上准确的说,应该是排序后缀数组. 一个长度为N的字符串,显然有N个后缀,将他们放入一个数组中并按字典序排序就是后缀数组的任务. 这个数组有很好的性质,使得我们运行 ...

  2. URAL 1517 Freedom of Choice(后缀数组,最长公共字串)

    题目 输出最长公共字串 #define maxn 200010 int wa[maxn],wb[maxn],wv[maxn],ws[maxn]; int cmp(int *r,int a,int b, ...

  3. URAL 1517 Freedom of Choice (后缀数组 输出两个串最长公共子串)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/whyorwhnt/article/details/34075603 题意:给出两个串的长度(一样长) ...

  4. 后缀数组 & 题目

    后缀数组被称为字符串处理神器,要解决字符串问题,一定要掌握它.(我这里的下标全部都是从1开始) 首先后缀数组要处理出两个数组,一个是sa[],sa[i]表示排名第i为的后缀的起始位置是什么,rank[ ...

  5. 后缀数组的倍增算法(Prefix Doubling)

    后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...

  6. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  7. BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]

    1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][St ...

  8. POJ3693 Maximum repetition substring [后缀数组 ST表]

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9458   Acc ...

  9. POJ1743 Musical Theme [后缀数组]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  10. 后缀数组(suffix array)详解

    写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...

随机推荐

  1. windows下composer安装

    第一步:配置path.这里我的php在C:\… \php目录下面. 第二步: 方法一: 使用安装程序 这是将 Composer 安装在你机器上的最简单的方法. 下载并且运行 Composer-Setu ...

  2. MySQL 数据库事物隔离级别的设置

    select @@tx_isolation; //查看隔离级别 set session transaction isolation level read uncommitted; //设置读未提交级别 ...

  3. 我的Android进阶之旅------>解决 Error: ShouldNotReachHere() 问题

    在Android项目中创建一个包含main()方法的类,直接右键运行该类时会报如下错误: # # An unexpected error has been detected by Java Runti ...

  4. 我的Android进阶之旅------>Android基于HTTP协议的多线程断点下载器的实现

    一.首先写这篇文章之前,要了解实现该Android多线程断点下载器的几个知识点 1.多线程下载的原理,如下图所示 注意:由于Android移动设备和PC机的处理器还是不能相比,所以开辟的子线程建议不要 ...

  5. Unity 武器拖尾效果

    Pocket RPG Weapon Trails 武器拖尾效果 Asset Store地址:https://www.assetstore.unity3d.com/en/#!/content/2458 ...

  6. zip 解压脚本

    zip 解压脚本 gpk-unzip.py #!/usr/bin/env python # -*- coding: utf-8 -*- # unzip-gbk.py import os import ...

  7. UVALive - 7427 the math 【二分匹配】

    题目链接 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  8. 【三】MongoDB文档的CURD操作

    一.插入文档 使用insert方法插入文档到一个集合中,如果集合不存在创建集合,有以下几种方法: db.collection.insertOne({}):(v3.2 new)  #插入一个文档到集合中 ...

  9. 【Flask模板】include标签

    # include标签:1. 这个标签相当于是直接将指定的模版中的代码复制粘贴到当前位置.2. `include`标签,如果想要使用父模版中的变量,直接用就可以了,不需要使用`with context ...

  10. 前端开发笔记--flex布局

    flex布局: 个人觉得flex布局比起传统布局要优先得多(主要是容易使用),缺点是IE10及以上版本才能使用,甚至某些属性只有在IE11才能使用(而且我发现凡是不兼容主要IE的坑来的多,不是说其他浏 ...