转载自网站:http://www.cnblogs.com/luo-peng/p/4785922.html

非局部均值去噪(NL-means)

 

非局部均值(NL-means)是近年来提出的一项新型的去噪技术。该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征。基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到。

理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要计算它与图像中所有像素点间的相似度。但是考虑到效率问题,实现的时候,会设定两个固定大小的窗口:搜索窗口和邻域窗口。邻域窗口在搜索窗口中滑动,根据邻域间的相似性确定像素的权值。

下图是NL-means算法执行过程,大窗口是以目标像素为中心的搜索窗口,两个灰色小窗口分别是以为中心的邻域窗口。其中以为中心的邻域窗口在搜索窗口中滑动,通过计算两个邻域窗口间的相似程度为赋以权值 。

NL-means执行过程

设含噪声图像为,去噪后的图像为中像素点处的灰度值通过如下方式得到:

其中权值表示像素点间的相似度,它的值由以为中心的矩形邻域间的距离决定:

其中

为归一化系数,为平滑参数,控制高斯函数的衰减程度。越大高斯函数变化越平缓,去噪水平越高,但同时也会导致图像越模糊。越小,边缘细节成分保持得越多,但会残留过多的噪声点。的具体取值应当以图像中的噪声水平为依据。

程序:

close all;
clear all;
clc
I=double(imread('lena.tif'));
I=I+10*randn(size(I));
tic
O1=NLmeans(I,2,5,10);
toc
imshow([I,O1],[]);
function DenoisedImg=NLmeans(I,ds,Ds,h)
%I:含噪声图像
%ds:邻域窗口半径
%Ds:搜索窗口半径
%h:高斯函数平滑参数
%DenoisedImg:去噪图像
I=double(I);
[m,n]=size(I);
DenoisedImg=zeros(m,n);
PaddedImg = padarray(I,[ds,ds],'symmetric','both');
kernel=ones(2*ds+1,2*ds+1);
kernel=kernel./((2*ds+1)*(2*ds+1));
h2=h*h;
for i=1:m
for j=1:n
i1=i+ds;
j1=j+ds;
W1=PaddedImg(i1-ds:i1+ds,j1-ds:j1+ds);%邻域窗口1
wmax=0;
average=0;
sweight=0;
%%搜索窗口
rmin = max(i1-Ds,ds+1);
rmax = min(i1+Ds,m+ds);
smin = max(j1-Ds,ds+1);
smax = min(j1+Ds,n+ds);
for r=rmin:rmax
for s=smin:smax
if(r==i1&&s==j1)
continue;
end
W2=PaddedImg(r-ds:r+ds,s-ds:s+ds);%邻域窗口2
Dist2=sum(sum(kernel.*(W1-W2).*(W1-W2)));%邻域间距离
w=exp(-Dist2/h2);
if(w>wmax)
wmax=w;
end
sweight=sweight+w;
average=average+w*PaddedImg(r,s);
end
end
average=average+wmax*PaddedImg(i1,j1);%自身取最大权值
sweight=sweight+wmax;
DenoisedImg(i,j)=average/sweight;
end
end

结果:

可以看出,NL-means去噪效果的确很好。但是该算法的最大缺陷就是计算复杂度太高,程序非常耗时,导致该算法不够实用。上例中256*256的lena图耗时高达33.913968s!!

针对此问题,积分图像的应用(二):非局部均值去噪(NL-means)一文使用积分图像对该算法进行加速。

非局部均值(Nonlocal-Mean)的更多相关文章

  1. 积分图像的应用(二):非局部均值去噪(NL-means)

    非局部均值去噪(NL-means)一文介绍了NL-means基本算法,同时指出了该算法效率低的问题,本文将使用积分图像技术对该算法进行加速. 假设图像共像个素点,搜索窗口大小,领域窗口大小, 计算两个 ...

  2. NLM非局部均值算法相关

    NLM原文: 基于图像分割的非局部均值去噪算法 基于图像分割的非局部均值去噪算法_百度文库 https://wenku.baidu.com/view/6a51abdfcd22bcd126fff705c ...

  3. 非局部均值去噪(NL-means)

    非局部均值(NL-means)是近年来提出的一项新型的去噪技术.该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征.基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的 ...

  4. 非局部均值滤波算法的python实现

    如题,比opencv自带的实现效果好 #coding:utf8 import cv2 import numpy as np def psnr(A, B): return 10*np.log(255*2 ...

  5. Unix系统编程()执行非局部跳转:setjmp和longjmp

    使用库函数setjmp和longjmp可执行非局部跳转(local goto). 术语"非局部(nonlocal)"是指跳转目标为当前执行函数之外的某个位置. C语言里面有个&qu ...

  6. 非局部模块(Non Local module)

    Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects 何恺明提出了非局部神经网络(Non-local ...

  7. CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL)

    CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal N ...

  8. OpenCV2:等间隔采样和局部均值的图像缩小

    图像的缩小从物理意义上来说,就是将图像的每个像素的大小缩小相应的倍数.但是,改变像素的物理尺寸显然不是那么容易的,从数字图像处理的角度来看,图像的缩小实际就是通过减少像素个数来实现的.显而易见的,减少 ...

  9. 【转】浅析C语言的非局部跳转:setjmp和longjmp

    转自 http://www.cnblogs.com/lienhua34/archive/2012/04/22/2464859.html C语言中有一个goto语句,其可以结合标号实现函数内部的任意跳转 ...

随机推荐

  1. Codeforces 56D Changing a String (DP)

    题意:你可以对字符串s进行3种操作: 1,在pos位置插入字符ch. 2,删除pos位置的字符. 3,替换pos位置的字符为ch. 问最少需要多少次操作可以把字符s变成字符s1? 思路: 设dp[i] ...

  2. Node内存限制与垃圾回收

    对象分配 所有的JS对象都是通过堆来进行分配的.使用process.memoryUsage()查看使用情况Node.js 中文网文档 process.memoryUsage() { rss: , he ...

  3. ES02 变量、数组、对象、方法

    1 变量 1.1 变量的声明 利用var关键字来声明变量,例如: var a = 100; <!DOCTYPE html> <html> <head> <me ...

  4. SpringBoot07 异常枚举、自定义异常、统一的全局异常处理

    1 异常编号和提示信息统一管理 利用枚举来实现异常的统一管理 package cn.xiangxu.springboottest.enums; import lombok.Getter; /** * ...

  5. winform 对话框控件

    ColorDialog 可以调节颜色的控件,如果给一个按钮点击事件 ColorDialog.showdialog();就会弹出这个 返回值是个枚举类 然后定义一个这个类的变量 接收一下它的返回值 Di ...

  6. Hadoop的Writerable在Spark无法序列化的问题

    Spark序列化这块网上讲的比较少,自己还没来得及看这块代码,今天编程的时候遇到一个Hadoop的Writerable实现在Spark无法序列化的问题.我的代码如下: object EntryApp ...

  7. js教程--从入门到精通 第一篇 js的前世今生以及js中基本数据类型和引入方式

    1.Javascript前世今生   1.1.什么是Javascript       Javascript运行于Javascript [解释器/引擎]中的解释性脚本语言      Javascript ...

  8. ConnectionState详解

    ConnectionState有六个属性值ConnectionState.Broken;与数据源连接断开.只有在连接打开后才有可能发生这种情况.可以关闭处于这种状态下的连接,然后重新打开.Connec ...

  9. C#模拟进度条

    自己看源码 using System; namespace ConsoleTest { class Program { static void Main(string[] args) { Consol ...

  10. linux配置环境变量 - 认识

    环境 ubuntu17.04 终端(就是黑框) 认识  环境变量:$PATH 在 ×××/bin 下的命令,可以不用到指定目录下, 比如:安装hbase后,hbase提供一些shell命令在habse ...