点此看题面

大致题意: 问你一棵\(n\)个节点的有根二叉树叶节点的期望个数。

大致思路

看到期望,比较显然可以想到设\(num_i\)为\(i\)个节点的二叉树个数,\(tot_i\)为所有\(i\)个节点的二叉树的叶节点总数。

则答案显然为\(\frac{tot_i}{num_i}\)。

而\(num_i\)其实就是一个卡特兰数(这其实就是\(NOIP2018\)提高组初赛卷中\(T8\)的\(A\)选项改正后的结果啊),故可以得到\(num_i=(2n)!/(n+1)!/n!\)。

通过找规律可以发现\(tot_i=n\cdot num_{i-1}\)。

于是答案就是\(\frac{n\cdot num_{i-1}}{num_i}=\frac{n\cdot(2n-2)!/n!/(n-1)!}{(2n)!/(n+1)!/n!}=\frac{n}{2n(2n-1)/(n+1)/n}=\frac{n(n+1)}{4n-2}\)。

代码也十分简洁。

代码

#include<bits/stdc++.h>
using namespace std;
int n;
int main()
{
scanf("%d",&n),printf("%.9lf",1.0*n*(n+1)/(4LL*n-2));//求出n(n+1)/(4n-2)
return 0;
}

【BZOJ4001】[TJOI2015] 概率论(卡特兰数)的更多相关文章

  1. BZOJ4001[TJOI2015]概率论——卡特兰数

    题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...

  2. BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)

    Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...

  3. [TJOI2015]概率论[卡特兰数]

    题意 \(n\) 个节点二叉树的叶子节点的期望个数. \(n\leq 10^9\) . 分析 实际询问可以转化为 \(n\) 个点的不同形态的二叉树的叶子节点总数. 定义 \(f_n\) 表示 \(n ...

  4. luoguP3978 [TJOI2015]概率论 卡特兰数

    考虑分别求出$f_n, g_n$表示$n$个点的有根二叉树的数量和$n$个点的所有情况下有根二叉树的叶子结点的总数 有$f_n = \sum_{k} f_k * f_{n - 1 - k}$,因此有$ ...

  5. bzoj4001: [TJOI2015]概率论

    题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...

  6. BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)

    设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...

  7. 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)

    传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn​表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...

  8. BZOJ4001 [TJOI2015]概率论 【生成函数】

    题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...

  9. [TJOI2015] 概率论 - Catalan数

    一棵随机生成的 \(n\) 个结点的有根二叉树(所有互相不同构的形态等概率出现)的叶子节点数的期望.\(n \leq 10^9\) Solution \(n\) 个点的二叉树个数即 Catalan 数 ...

随机推荐

  1. Unity3D -- shader光照常用函数和变量

    上一篇记录了shader常用函数和变量,这篇记录一些光照计算时常用函数和变量 1.内置的光照变量 _LightColor0 float4 //该Pass处理的逐像素光源的颜色 _WorldSpaceL ...

  2. Java中的生产者和消费者实例(多线程 等待唤醒机制)

    1.什么是等待唤醒 我们实现的效果 创建生产者和消费者  对服装进行生产  和售卖 实现生产一个就消费一个 来观察线程的各种状态 下面是用到的方法: wait()方法:让一个线程进行等待 另外一个线程 ...

  3. EIGRP-5-EIGRP数据包格式

    EIGRP数据包直接承戟在IP数据包中.协议号为88.EIGRP数据包的最大长度取决于具体接口上的最大IP MTU设置——通常完整IP数据包为1500字节.其中1480字节可以用于 EIGRP数据包. ...

  4. POJ1040 Transportation

    题目来源:http://poj.org/problem?id=1040 题目大意: 某运输公司要做一个测试.从A城市到B城市的一条运输线路中有若干个站,将所有站包括A和B在内按顺序编号为0到m.该路线 ...

  5. APP测试常见功能测试点汇总

    本文总结了一些APP功能测试中经常遇见测试点,仅供参考,是好早以前看哪位前辈总结的,一直在使用,所以也稍微的修改了下放到自己的博客中,以备日后温习.1.安装和卸载安装和卸载是任何一款APP中都属于最基 ...

  6. rancher中级(一)(rancher的存储,网络)

    容器的存储机制 参考 http://dockone.io/article/128:http://dockone.io/article/129: Docker镜像是由多个文件系统(只读层)叠加而成.当我 ...

  7. 006 ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  8. LeetCode 128 Longest Consecutive Sequence 一个无序整数数组中找到最长连续序列

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence.Fo ...

  9. D. Beautiful numbers

    题目链接:http://codeforces.com/problemset/problem/55/D D. Beautiful numbers time limit per test 4 second ...

  10. B - Average Gym - 101161B 组合数学

    http://codeforces.com/gym/101161/attachments 今天被卡常了,其实是自己对组合数技巧研究的不够. 如果是n, m <= 1e5的,然后取模是质数,那么可 ...